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Abstract

This project considers the application of convex optimization on design of multiuser non-cooperative
communication systems via game theory. The interference channel is modeled as a non-cooperative
power competing game and its Nash Equilibrium (NE) is the solution. There are three questions to
ask: 1) whether the NE exists? 2) if it exists, whether it is unique? 3) if it is unique, how to find the
equilibrium point? This problem has been studied in a number of papers. A variety of conditions
guaranteeing the uniqueness of the NE and convergence of many different distributed algorithms
have been derived. This project is part of my Final Year Thesis project and provides a survey on
the first two questions, i.e. existence and uniqueness of the NE points. The last question about the
convergence of the distributed algorithms will be studied afterwards.

I Introduction

In a general noncooperative game, there are N players, each of whom has a certain cost function and
strategy set that may depend on the other players’ actions. Assume that player i’s strategy set is Ki,
which is a subset of Rni and is independent of the other players’ actions. Player i’s cost function θi(x)
depends on all players’ strategies, which are described by the vector x that consists of the subvectors
xi ∈ Rni for i = 1, ..., N . Player i’s problem is to determine, for each fixed but arbitrary tuple x̃i = (xj :
j 6= i) of other players’ strategies, an optimal strategy xi that solves the cost minimization problem in
the variable xi:

minimize{xi} θi(xi, x̃i)

subject to xi ∈ Ki (1)

The solution set of the optimization problem is denoted by Si(x̃i). A Nash Equilibrium (NE) is a tuple
of strategies x = (xi : i = 1, ..., N) with the property that for each i, xi ∈ Si(x̃i). In words, a NE is a
tuple of strategies, one for each player, such that no player can lower the cost by unilaterally deviating
his action from his designated strategy.

The interference channel is a mathematical model relevant to many physical communication channels
and multiuser systems where multiple uncoordinated links share a common communication medium. It
is characterized by its capacity region, defined as the set of rates that can be simultaneously achieved
by the users in the system. In principle, this multi-objective optimization of the communication system
requires a centralized solution, which has high complexity, heavy signaling and the coordination among
the users. Instead, the system can be designed in a game theoretical approach in a fully distributed
fashion with no centralized control. The basic idea is that users in the system can be modeled as several
players having different objectives, say maximizing their own mutual information or data rate, and
behave selfishly without cooperation. Therefore, the original multi-objective optimization problem is
converted into a set of mutually coupled single-objective optimization problems. The optimal solution
to this approach is the achievement of NE. The existence and uniqueness of the NE have been studied
in a number of works together with several iterative and distributed algorithms that converge to NE
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points. This project mainly focuses on the proof of the existence and uniqueness of NE of the strategic
non-cooperative game, which is part of my Final Year Thesis project. The convergence of the distributed
algorithms will be studied afterwards.

Eight papers [1, 2, 3, 4, 5, 6, 7, 8] are investigated in this report. [1, 2, 3] considers the two-user
single-input single-output system and they are the seminal papers studying the strategic non-cooperative
power competing game. [4, 5, 6, 7, 8] extend the problem to an arbitrary number of users. Among those
papers, [1, 2, 3, 4, 7] considers the maximization of the data rate; [5, 6] considers the maximization of
the mutual information; and [8] considers both cases and proves that they are equivalent and have a
unified formulation. As for the proof of the existence and uniqueness of the NE points, this report focus
on the proofs from [7] and [8]. While [7] is based on a key result that establishes a reformulation of the
noncooperative Nash game as a linear complementarity problem (LCP), [8] applies problem simplification
and the result for K-matrix.

This report is organized as follows. In Section II, general system model and problem formulation are
described. Section III shows the proof based on majorization theory [9] from [8] about the equivalence
of two maximization approaches, i.e. maximization of mutual information and maximization of data
rate. Section IV give the proof of the existence and uniqueness of the NE points from two different
methods in [7] and [8], respectively, i.e. by LCP formulation and by problem simplification and K-
matrix formulation. Section V compares the results from those eight papers. Section VI gives some
concluding remarks.

II General System Model and Problem Formulation

In this section, a general system model is provided and the problem is formulated by game theoretical
approach. The constraints are also clarified.

A System Model

A general system model is represented by

yq = Hqqxq +
∑
r 6=q

Hrqxq + nq, (2)

where xq is the vector transmitted by source q; yq is the vector received by destination q; Hqq is the
direct channel of link q; Hrq is the cross-channel matrix between source r and destination q; and nq is the
noise vector.

∑
r 6=q Hrqxq represents the multi-user interference (MUI) received by the qth destination

and caused by other links; and it can be treated as additive noise.
This system model is sufficiently general to represent many cases of practical interest, such as digital

subsciber line, cellular radio and ad hoc wireless networks. It assumes that each destination has perfect
knowledge of the channel from its source, but not of the channel from the interfering sources.

B Problem Formulation

Using game theoretical approach, each user competes against the others in this strategic non-cooperative
power competing game by choosing his power allocation (i.e. strategy) to maximize his mutual infor-
mation or data rate (i.e. payoff). Reformulating the system within the framework of game theory, the
strategic non-cooperative game has the following structure:

(G) maximize{pq} Rq(pq,p−q)

subject to pq ∈ Pq

∀q ∈ Q (3)

where Q is the set of players; Pq is the set of admissible strategies for player q; Rq(pq,p−q) is the payoff
function of player q. To solve the problem, the existence and uniqueness of the solution, i.e. NE, are
needed to be considered.
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The payoff function Rq(pq,p−q) can be different for different practical interest. Maximization of
mutual information and maximization of data rate are two major payoff functions considered in the
strategic non-cooperative power competing game.Those two payoff function are actually equivalent and
the proof will be provided in the next section.

The physical constraints Pq required by the application are: 1) maximum transmit power for each
user and 2) spectral mask constraints. While [1, 2, 3, 4, 5, 6] only consider the first constraint, [7, 8]
consider both constraints.

Specific problem formulation will be provided when discussing the details of the proofs.

III Equivalence of Two Maximization Approaches [8]

The proof from [8] for the equivalence of two maximization approaches is shown in this section. The
system model is described by (2) and xq = Fqsq where sq is the information symbol vector and Fq is
the precoding vector. A cyclic prefix is incorporated on each transmitted block xq so that Hrq can be
diagonalized as

Hrq = WDrqW
H (4)

The physical constraints are as follows:
Co1) Maximum transmit power for each transmitter, i.e.,

E{‖xq‖22} =
1
N
Tr(FqF

H
q ) ≤ pq (5)

Co2) Spectral mask constraint, i.e.,

E{|[WHFqsq]k|2} = [WHFqF
H
Q W ]kk ≤ p̄max

q (k) (6)

A Problem Formulation for the two approaches

A.1 Maximization of Mutual Information

The mutual information for the qth user is:

Iq(Fq, F−q) =
1
N
log(|I + FH

q HH
qqR

−1
−qHqqFq|) (7)

where
R−q = σ2

qI +
∑
r 6=q

HrqFrF
H
r HH

rq (8)

is the interference-plus-noise covariance matrix observed by user q. Then we have the following strategic
noncooperative game:

(G1) maximize{Fq} Iq(Fq, F−q)
subject to Fq ∈ Fq

∀q ∈ Q (9)

where Iq(Fq, F−q) is the payoff function defined in (7), Q is the set of players, and Fq is the admissible
strategies of player q, defined as

Fq = {Fq ∈ CN×N :
1
N
Tr(FqF

H
q ) ≤ pq, [WHFqF

H
q W ]kk ≤ p̄max

q (k),∀k ∈ 1, ..., N} (10)
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A.2 Maximization of data rate

The transmission rate of each link is

rq(Fq, F−q) =
1
N

N∑
k=1

log2(1 +
SINRk,q(Fq, F−q)

Γq
) (11)

where
SINRk,q(Fq, F−q) =

1
[(I + FH

q HH
qqR

−1
−qHqqFq)−1]kk

− 1 (12)

and Γq ≥ 1 is the gap that depends only on the constellations and on the error probability. So the
structure of the game is

(G2) maximize{Fq} rq(Fq, F−q)
subject to Fq ∈ Fq

∀q ∈ Q (13)

where rq(Fq, F−q) is defined in (11), Fq is defined in (10), and Q is the set of players.

It is proved in [8] that every NE of the game is achieved using pure strategy, so only pure strategies
are considered here. The proof will not be discussed in this report.

B Theorem and the Proof

Theorem 1 : An optimal solution to the matrix-valued games G1 and G2 is

Fq = W
√
diag(pq),∀q ∈ Q (14)

where W is the IFFT matrix in (4) and pq = (pq(k))N
k=1 is the solution to the vectore-valued game G,

defined in (3), where

Rq(pq,p−q) =
1
N

N∑
k=1

log(1 +
1

Γq
sinrq(k)) (15)

with sinrq(k) = |Hqq(k)|2pq(k)

1+
∑

r 6=q
|Hrq(k)|2pr(k)

and

Pq = {pq ∈ RN :
1
N

N∑
k=1

pq(k) ≤ 1, 0 ≤ pq(k) ≤ pmax
q (k),∀k ∈ 1, ..., N} (16)

with pmax
q (k) = p̄max

q (k)/pq

Proof : We first prove Theorem 1 for game G1. Then we show that the same result holds true for
game G2.

Game G1:
Assume the optimal strategies of the other players are Fr = WΣ1/2

r , with Σr = diag(pr),∀r 6= q.
From (8), we have

HH
qqR

−1
−qHqq = HH

qq(σ2
qI +

∑
r 6=q

HrqFrF
H
r HH

rq)−1Hqq

= HH
qq(σ2

qI +
∑
r 6=q

HrqWΣrW
HHH

rq)−1Hqq

= WDH
qqW

H(σ2
qI +

∑
r 6=q

WDrqΣrD
H
rqW

H)−1WDqqW
H

= WΛqW
H (17)
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with Λq diagonal and [Λq]kk = |Hqq(k)|2

1+
∑

r 6=q
|Hrq(k)|2pr(k)

. Defining Qq = WHFqF
H
q W , from (7), we have

Iq(Fq, F−q) =
1
N
log(|I + FH

q HH
qqR

−1
−qHqqFq|)

=
1
N
log(|I + FH

q WΛqW
HFq|)

=
1
N
log(|I + ΛqW

HFqF
H
q W |)

=
1
N
log(|I + ΛqQq|)

≤ 1
N

∑
k

log(1 + [Λq]kk[Qq]kk) (Hadamard’s inequality) (18)

with equality reached if and only if Qq is diagonal. And since the power constraint (5) Tr(Qq) =
Tr(WHFqF

H
q W ) = Tr(FqF

H
q ) ≤ Npq and spectral mask constraint (6) [WHFqF

H
q W ]kk = [Qq]kk ≤

p̄max
q (k) depend only on the diagonal elements of Qq, we may set Qq diagonal, i.e. Qq = Σq, which leads

to the desired optimal structure for Fq = WΣ1/2
q = W

√
diag(pq). Introducing this optimal structure in

G1, we obtain the simpler game G in (3) with Γq = 1.
Game G2:
This proof is based on majorization theory [9] and the key definitions and results are outlined as

follows.
Definition 1 : For any two vectors x, y ∈ Rn, we say x is majorized by y or y majorizes x (denoted

by x ≺ y or y � x) if

i∑
k=1

x[k] ≤
i∑

k=1

y[k], 1 ≤ i ≤ n

n∑
k=1

x[k] =
n∑

k=1

y[k]

(19)

where x[k] and y[k] denote the elements of x and y, respectively, in decreasing order.
Definition 2 : A real valued function φ defined on a set A ⊆ Rn is said to be Schur convex on A if

x ≺ y on A ⇒ φ(x) ≤ φ(y) (20)

or Schur concave on A if
x ≺ y on A ⇒ φ(x) ≥ φ(y) (21)

.
Lemma 1 : For a Hermitian matrix A and a unitary matrix U , it follows that

1(A) ≺ d(UHAU) ≺ λ(A) (22)

. where d(A) and λ(A) denote the diagonal elements and eigenvalues of A, respectively, and 1(A) denotes
the vector with identical components equal to the average of the diagonal elements of A.

Assume the optimal strategies of the other players are Fr = WΣ1/2
r , with Σr = diag(pr),∀r 6= q.

Defining Pq = WHFq, the MSE matrix of user q can be written as

Eq(Pq) = (I + FH
q HH

qqR
−1
−qHqqFq)−1)−1

= (I + FH
q WΛqW

HFq)−1)−1 (from (17))

= (I + PH
q ΛqPq)−1 (23)

Eq(Pq) has two properties: i) it is a continuous function of Pq ∈ CN×N and ii) for any unitary matrix
U , it satisfies Eq(PqU) = UHEP (Pq)U .
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Since Game G2 minimizes rq(Fq, F−q), from (11), we can write:

fq(d(Eq(Pq))) = −rq(Fq) = − 1
N

N∑
k=1

log2(1 +
([Eq(Pq)]kk)−1 − 1

Γq
). (24)

fq(d(Eq(Pq))) has two properties: i) it is a continuous function of Pq ∈ CN×N and ii) it is Schur-concave
on RN

+ [10].
Using (23) and (24), game G2 becomes

(P1) maximize{Pq} fq(d(Eq(Pq)))

subject to
1
N
Tr(PqP

H
q ) ≤ pq

d(PqP
H
q ) ≤ p̄max

q = p̄max
q (k))N

k=1 (25)

Since the feasible set is closed and bounded, thus compact, and the objective function is continuous in its
interior, problem P1 always admits a solution. Assume the solution is P ∗q . As d(Eq(Pq)) and Tr(Eq(Pq))
depend on d(Eq(Pq)) only, problem P1 is equivalent to

(P2) maximize{Pq} fq(d(Eq(Pq)))

subject to d(PqP
H
q ) = d∗q = d(P ∗q P

∗H
q ) (26)

Defining P̃q = PqU , the constraint is not affected: d(P̃qP̃
H
q ) = d(PqUU

HPH
q ) = d(PqP

H
q ). Since

fq(d(Eq(Pq))) is Schur-concave, we have

d(Eq(Pq)) ≺ λ(Eq(Pq)) ⇒ fq(d(Eq(Pq))) ≥ fq(λ(Eq(Pq))) (27)

d(Eq(P̃q)) = d(UHEq(Pq)U) ≺ λ(Eq(Pq)) ⇒ fq(d(Eq(P̃q))) ≥ fq(λ(Eq(Pq))) (28)

When U diagonalize Eq(Pq), d(Eq(P̃q)) = d(UHEq(Pq)U) = λ(Eq(Pq)); and when Eq(Pq) is diagonal,
d(Eq(Pq)) = d(Eq(P̃q)) = λ(Eq(Pq)); thus fq(d(Eq(Pq))) = fq(λ(Eq(Pq))) is minimized. So Eq(Pq) is
diagonal with an optimal Pq, i.e. PH

q ΛqPq is diagonal from (23). Define PH
q ΛqPq = Σq, i.e. Pq =

Λ−1/2
q UqΣ−1/2

q and d(PqP
H
q ) = d(UqΣqU

H
q ) = d̄∗q = Λqd

∗
q , where Uq is any unitary matrix. From (24),

we have

fq(d(Eq(Pq))) = − 1
N

N∑
k=1

log2(1 +
([(I + Σq)−1]kk)−1 − 1

Γq
)

= − 1
N

N∑
k=1

log2(1 +
[Σq]kk

Γq
) (29)

So problem P1 is equivalent to

(P3) maximize{Σq,Uq} − 1
N

N∑
k=1

log2(1 +
[Σq]kk

Γq
)

subject to d(UqΣqU
H
q ) = d̄∗q (30)

Since we can always find a Uq satisfying the optimal solution Σ∗q and d̄∗q = d(UqΣqU
H
q ) ≺ λ(Σq) = d(Σq),

we have

(P4) maximize{Σq} − 1
N

N∑
k=1

log2(1 +
[Σq]kk

Γq
)

subject to d(Σq) � d̄∗q (31)

Since the objective function is Schur-convex, the optimal solution Σ∗q satisfies d(Σ∗q) = d̄∗q . As we need

Uq satisfying d(UqΣ∗QU
H
q ) = d̄∗q = d(Σ∗q), we get U∗q = I. Therefore, P ∗q = Λ−1/2

q Σ∗1/2
q , which leads to

the desired expression F ∗q = WP ∗q = W
√
diag(pq). This completes the proof.
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IV Existence and Uniqueness of NE

This section investigates the existence and uniqueness of the NE from two different methods in [8] and
[7], respectively. While [8] uses problem simplification and the result of K-matrix, [7] reformulates the
strategic noncooperative power competing game by LCP and applies the result of LCPs. The proof in
[8] will be discussed first, then the proof in [7].

A Proof by Problem Simplification and K-matrix Formulation [8]

Given game G, define the nonnegative matrix S(k) ∈ RQ×Q+ as

[S(k)]qr =

{
Γq
|Hrq(k)|2
|Hqq(k)|2 , if k ∈ Dq ∩ Dr, r 6= q,

0, otherwise.
(32)

where Dq is any subset of {1, ..., N} such that Dmax
q ⊆ Dq ⊆ {1, ..., N}, with Dmin

q denoting the set
{1, ..., N} deprived of the carrier indexes that user q would never use as the best response set to any
strategy used by the other users.

Theorem 2 : Game G admits a nonempty solution set for any set of channels, transmit power and
spectral mask constraints of the user. Furthermore, the NE is unique if

ρ(S(k)) < 1,∀k ∈ {1, ..., N} (33)

where ρ(S(k)) denotes the spectral radius of S(k).
Proof :
Existence of an NE :
We have the following fundamental game theory result from [11].
Theorem 3 : The strategic noncooperative game G = {Q, {Xq}q∈Q, {Φq}q∈Q} admits at least one NE

if, for all q ∈ Q: 1) the set Xq is an nonempty compact convex subset of a Euclidean space, and 2) the
payoff function Φq(x) is continuous on X and quasi-concave on Xq.

Since 1) the set Pq of the strategies, given by (16), is convex and compact and 2) the payoff function
of each player, given by(15), is continuous in p and concave in pq ∈ Pq for any given p−q, game G always
admits at least one NE.

Uniqueness of the NE :
This proof is based on the problem simplification and the result of K-matrix, thus the following

intermediate results are need:
Definition 3 : A matrix A ∈ RN×N is said to be a Z-matrix if its off-diagonal entries are all non-

positive. A matrix A ∈ RN×N is said to be a P-matrix if all its principal minors are positive. A Z-matrix
that is also P-matrix is called a K-matrix.

Lemma 2 : A matrix A ∈ RN×N is a P-matrix if and only if A does not reserse the sign of any
nonzero vector, i.e.

xi[Ax]i ≤ 0, for all i⇒ x = 0. (34)

Lemma 3 : Let A ∈ RN×N be a K-matrix and B a nonnegative matrix. Then ρ(A−1B) < 1 if and
only if A−B is a K-matrix.

The idea of the proof is that we first derive a necessary condition for two admissible strategies to be
different NE of game G. Then we obtain a sufficient condition that guarantees the previous condition is
not satisfied; hence guaranteeing that there cannot be two different NE.

Assume game G admits two different NE points, denoted by p(0) and p(1), where p(r) = [p(r)T
1 , ...,p(r)T

Q ]T

amd p(r)T
q = [p(r)

q (1), ..., p(r)
q (N)]T , with r = 0, 1, and q ∈ Q. From (16), the constraints of game G can

be writen as fq,k(p(r)
q ) > 0, and

fq,k(p(r)
q ) =


p

(r)
q (k), if 1 ≤ k ≤ N

1− 1T p(r)
q , if k = N + 1

pmax
q (k −N − 1)− p(r)

q (k −N − 1), if otherwise
(35)
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From the objective function (15), we have

[∇pq
Rq(p)]k =

loge

ΓqN

|Hqq(k)|2

1 +
∑

r 6=q |Hrq(k)|2pr(k) + Γ−1
q |Hqq(k)|2pq(k)

(36)

So the Karush-Kuhn-Tucker (KKT) conditions needed to be satisfied are
1) primal constraints: fq,k(p(r)

q ) ≥ 0
2) dual constraints: µr

q ≥ 0

3) complementary slackness: µr
q,kfq,k(p(r)

q ) = 0

4) gradient of Lagrangian with respect to pq vanishes: ∇pq
Rq(p(r)) +

∑2N+1
k=1 µ

(r)
q,k∇pq

fq,k(p(r)
q ) = 0

Then we have:

(p(1)
q − p(0)

q )T [∇pq
Rq(p(0)) +

2N+1∑
k=1

µ
(0)
q,k∇pq

fq,k(p(0)
q )]

+(p(0)
q − p(1)

q )T [∇pq
Rq(p(1)) +

2N+1∑
k=1

µ
(1)
q,k∇pq

fq,k(p(1)
q )]

= (p(1)
q − p(0)

q )T∇pq
Rq(p(0)) + (p(0)

q − p(1)
q )T∇pq

Rq(p(1))

+
2N+1∑
k=1

[µ(0)
q,k(p(1)

q − p(0)
q )T∇pq

fq,k(p(0)
q ) + µ

(1)
q,k(p(0)

q − p(1)
q )T∇pq

fq,k(p(1)
q )] = 0 (37)

Since fq,k(p(r)
q ) is linear, we have

(p(1)
q − p(0)

q )T∇pq
fq,k(p(0)

q ) = fq,k(p(1)
q )− fq,k(p(0)

q )

(p(0)
q − p(1)

q )T∇pq
fq,k(p(1)

q ) = fq,k(p(0)
q )− fq,k(p(1)

q ) (38)

Thus the second term in (37) is zero and we get

(p(1)
q − p(0)

q )T∇pq
Rq(p(0)) + (p(0)

q − p(1)
q )T∇pq

Rq(p(1))

= −
2N+1∑
k=1

[µ(0)
q,k(p(1)

q − p(0)
q )T∇pq

fq,k(p(0)
q ) + µ

(1)
q,k(p(0)

q − p(1)
q )T∇pq

fq,k(p(1)
q )]

= −
2N+1∑
k=1

[µ(0)
q,kfq,k(p(1)

q ) + µ
(1)
q,kfq,k(p(0)

q )] ≤ 0 (39)

(39) is the necessary condition for two admissible strategies to be different NE. If (39) is strictly positive,
then p(0) and p(1) cannot be different. So for some q ∈ Q

(p(1)
q − p(0)

q )T∇pq
Rq(p(0)) + (p(0)

q − p(1)
q )T∇pq

Rq(p(1))

= (p(1)
q − p(0)

q )T (∇pq
Rq(p(0))−∇pq

Rq(p(1)))

=
∑

k∈Dq

{α(k,p(0),p(1))|Hqq(k)|2(p(1)
q (k)− p(0)

q (k))

×[Γ−1
q |Hqq(k)|2 +

∑
r 6=q

|Hrq(k)|2](p(1)
q (k)− p(0)

q (k))} > 0 (40)

where α(k,p(0),p(1)) = loge
ΓqN (1+

∑
r 6=q |Hrq(k)|2p(0)

r (k)+Γ−1
q |Hqq(k)|2p(0)

q (k))−1(1+
∑

r 6=q |Hrq(k)|2p(1)
r (k)+

Γ−1
q |Hqq(k)|2p(1)

q (k))−1 > 0. Define Kq as the set of carriers in Dq such that the two solutions coincide
and observe that Kq 6= Dq. From (40), we have

(p(1)
q (k)− p(0)

q (k))[Γ−1
q |Hqq(k)|2 +

∑
r 6=q

|Hrq(k)|2](p(1)
q (k)− p(0)

q (k))
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= Γ−1
q |Hqq(k)|2(p(1)

q (k)− p(0)
q (k))2 + (p(1)

q (k)− p(0)
q (k))

∑
r 6=q

|Hrq(k)|2(p(1)
q (k)− p(0)

q (k))

= Γ−1
q |Hqq(k)|2|p(1)

q (k)− p(0)
q (k)|+ sign(p(1)

q (k)− p(0)
q (k))

∑
r 6=q

|Hrq(k)|2(p(1)
q (k)− p(0)

q (k))

> 0,∀k ∈ Dq\Kq and some q ∈ Q (41)

where sign(.) is the sign function, defined as sign(x) = 1 if x > 0, sign(x) = 0 if x = 0, and sign(x) = −1
if x < 0. Since (p(1)

r (k)− p(0)
r (k)) = 0 whenever k /∈ Dr, so

|p(1)
q (k)− p(0)

q (k)|+ sign(p(1)
q (k)− p(0)

q (k))
∑
r 6=q

Grq(k)(p(1)
q (k)− p(0)

q (k)) > 0

∀k ∈ Dq\Kq and some q ∈ Q (42)

where

Grq(k) =

{
Γq
|Hrq(k)|2
|Hqq(k)|2 , if k ∈ Dr,

0, otherwise.
(43)

Define ∆q(k) = |p(1)
q (k)− p(0)

q (k)| and considering the worst possible case, we get

∆q(k) >
∑
r 6=q

Grq(k)∆r(k),∀k ∈ Dq\Kq and some q ∈ Q (44)

when (44) is satisfied, p(0) and p(1) cannot be different. If the problem has two different NE, the
following condition needs to be satistied by such p(0) and p(1):

∆q(k) ≤
∑
r 6=q

Grq(k)∆r(k),∀k ∈ Dq\Kq and some q ∈ Q (45)

Since ∆q(k) = 0 whenever k /∈ Dq and from (43), we introduce

G̃rq(k) =

{
Γq
|Hrq(k)|2
|Hqq(k)|2 , if k ∈ Dq ∩ Dr,

0, otherwise.
(46)

and we have
∆q(kq) ≤

∑
r 6=q

G̃rq(kq)∆r(kq),∀kq ∈ Dq\Kq and some q ∈ Q (47)

where kq denotes any subcarrier index in the set Dq\Kq. Condition (47) can be rewritten in a vector
form

(I − S̄)∆ ≤ 0 (48)

where

∆ = [∆T (1), ...,∆T (NQ)]T (49)
∆(k) = [∆1(k), ...,∆Q(k)]T (50)

S̄ = diag({S̄(k)}Nk=1) (51)

[S̄(k)]qr =
{
G̃rq(k), if k = kq and r 6= q,
0, otherwise.

(52)

Since ∆ ≥ 0, (48) implies ∆i[(I − S̄)∆]i ≤ 0. From Lemma 2, we know

I − S̄ is a P-matrix (53)

From (32), we see

[S(k)]qr =
{
G̃rq(k), if r 6= q,
0, otherwise.

(54)
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From Definition 3, we know I − S̄ and I − S are both Z-matrices and I − S̄ ≥ I − S componentwisely.
So a sufficient condition for (53) is [12]:

I − S is a P-matrix (55)

So I − S is a K-matrix from Definition 3. By Lemma 3, we have

ρ(S) < 1 (56)

which leads to (33). This completes the proof.

B Proof by LCP Formulation [7]

B.1 Background on LCP and AVI

This proof requires the background on Linear Complementarity Problem (LCP) and Affine Variational
Inequalities (AVI). The following definitions and results are needed [12, 13].

Definition 4 [12]: Given a vector q ∈ Rn and a matrix M ∈ Rn×n, the linear complementarity
problem, abbreviated LCP, is to find a vector x ∈ Rn such that

x ≥ 0 (57)
q +Mx ≥ 0 (58)

xT (q +Mx) = 0 (59)

or to show that no such vector x exists.
Definition 5 [13]: Given a subset K of the Euclidean n-dimensional space Rn and a mapping F :

K → Rn, the variational inequality, denoted V I(K, F ), is to find a vector x ∈ K such that

(y − x)TF (x) ≥ 0,∀y ∈ K (60)

The set of solutions to this problem is denoted SOL(K, F ). When F is the affine function given by:

F (x) = q +Mx, ∀x ∈ Rn (61)

for some vector q ∈ Rn and matrix M ∈ Rn×n and K is a polyhedral set, the affine variational inequality,
denoted AV I(K, q,M), is to find a vector x ∈ K such that

(y − x)TF (x) = (y − x)T (q +Mx) ≥ 0,∀y ∈ K (62)

In a general noncooperative game defined in (66), the following result gives a set of sufficient condi-
tions under which a NE can be obtained by solving a VI.

Proposition 1 [13]: Let each Ki be a closed convex subset ofRni . Suppose that for each fixed tuple x̃i,
the function θi(xi, x̃i) is convex and continuously differentiable in xi. Then a tuple x = (xi : i = 1, ..., N)
is a NE if and only if x ∈ SOL(K, F ), where

K =
N∏

i=1

Ki and F (x) = (∇xi
θi(x))N

i=1 (63)

i.e. x is a NE if and only if for each player i = 1, ..., N ,

(yi − xi)T∇xi
θi(x) ≥ 0,∀yi ∈ Ki (64)

Definition 6 [13]: If K =
∏N

i Ki, a map F : K → Rn is a uniformly P function on K if there exists
a constant µ > 0 such that for all pairs of vectors x and y in K,

max1≤i≤N (xi − yi)T (Fi(x)− Fi(y)) ≥ µ‖x− y‖22 (65)

Proposition 2 [13]: If K =
∏N

i Ki and each Ki is closed convex and F is a continuous uniformly P
function on K, then the V I(K, F ) has a unique solution.

10



B.2 Problem Reformulation

The specific problem formulation is: for k = 1, ..., n

maximize{pi} fi(p1, ..., pm) =
n∑

k=1

log(1 +
pi

k

σi
k +

∑
j 6=i α

ij
k p

j
k

)

subject to pi ∈ Pi (66)

where σi
k are positive scalars representing noise power spectral; αij

k are nonnegative scalars for all i 6= j
representing channel crosstalk coefficients; and

Pi = {pi ∈ Rn|0 ≤ pi
k ≤ CAP i

k,∀k = 1, ..., n,
n∑

k=1

pi
k ≤ P i

max} (67)

In [7], it is assumed that αii
k = 1 for all i and k. To avoid triviality, it is assumed that

P i
max <

n∑
k=1

CAP i
k (68)

which ensures that the power constraint
∑n

k=1 p
i
k ≤ P i

max is not redundant.
The KKT conditions for this problem are: ∀k = 1, ..., n

1) primal constraints:

P i
max −

n∑
k=1

pi
k ≥ 0 (69)

CAP i
k − pi

k ≥ 0 (70)
pi

k ≥ 0 (71)

2) dual constraints:

ui ≥ 0 (72)
γi

k ≥ 0 (73)
λi

k ≥ 0 (74)

3) complementary slackness:

ui(P i
max −

n∑
k=1

pi
k) = 0 (75)

γi
k(CAP i

k − pi
k) = 0 (76)

λi
k(pi

k) = 0 (77)

4) gradient of Lagrangian with respect to pi:

∇pi
[fi(p1, ..., pm) + ui(P i

max −
n∑

k=1

pi
k) + γi

k(CAP i
k − pi

k) + λi
k(pi

k)]

=
1

σi
k +

∑
j 6=i α

ij
k p

j
k + pi

k

− ui − γi
k + λi

k (78)

=
1

σi
k +

∑m
j=1 α

ij
k p

j
k

− ui − γi
k + λi

k = 0 (79)

From (74)(77)(79), we have

− 1
σi

k +
∑m

j=1 α
ij
k p

j
k

+ ui + γi
k ≥ 0 and (− 1

σi
k +

∑m
j=1 α

ij
k p

j
k

+ ui + γi
k)pi

k = 0 (80)
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Though the KKT system is nonlinear, it can be shown that under the assumption (68), the system is
equivalent to a mixed LCP system.

Proposition 3 [7]: Suppose that (68) holds. The above KKT condition is equivalent to: ∀k = 1, ..., n

0 ≤ pi
k⊥σi

k +
m∑

j=1

αij
k p

j
k + vi + ϕi

k ≥ 0

vi free, P i
max −

n∑
k=1

pi
k = 0

0 ≤ ϕi
k⊥CAP i

k − pi
k ≥ 0 (81)

Proof :
If ui = 0, then γi

k ≥ (σi
k +
∑m

j=1 α
ij
k p

j
k)−1 > 0, which implies CAP i

k−pi
k = 0, thus P i

max ≥
∑n

k=1 p
i
k =∑n

k=1 CAP
i
k. This contradicts (68). So ui 6= 0 and P i

max −
∑n

k=1 p
i
k = 0. Define

vi = − 1
ui

(so vi is free) (82)

ϕi
k =

γi
k(σi

k +
∑m

j=1 α
ij
k p

j
k)

ui
(83)

Then substituting (82) and (83) back to (81), we can easily see that the KKT system holds. This
completes the proof.

The mixed LCP (81) is actually the KKT condition of the AV I(X , σ,M) defined by the affine
mapping p = (pi)m

i=1 ∈ Rmn → σ + Mp ∈ Rmn and the polyhedron X =
∏m

i=1 P̂i, where σ = (σi
k)m

i=1,
M is the block partitioned matrix (M ij)m

i,j=1 with each M ij = diag(αij
k )n

k=1 and

P̂i = {pi ∈ Rn|0 ≤ pi
k ≤ CAP i

k,∀k = 1, ..., n,
n∑

k=1

pi
k = P i

max} (84)

According to Proposition 1, the tuple p is a NE if and only if p ∈ X and

(p̃− p)T (σ +Mp) ≥ 0,∀p̃ ∈ X (85)

B.3 Uniqueness Conditions and the Proof

Define the m×m matrix B = [bij ] by

bij = max1≤k≤nα
ij
k ,∀i, j = 1, ...,m (86)

Note that bii = 1. Let Bdia, Blow and Bupp be the diagonal, strictly lower, and strictly upper triangular
parts of B, respectively. Since αij

k are all nonnegative, B is a nonnegative matrix. From Definition 3
and all principal minors of Bdia − Blow are equal to one, we know that Bdia − Blow is a M-matrix and
thus (Bdia −Blow)−1 exists and is a nonnegative matrix. Therefore, so is the matrix

Υ = (Bdia −Blow)−1Bupp. (87)

The matrix
B̄ = Bdia −Blow −Bupp (88)

is the ”comparison matrix” of B. Note that B̄ is a Z-matrix. B is called a H-matrix if B̄ is also a
P-matrix. Two characterizations hold for the latter condition: a) ρ(Υ) < 1 and b) for every nonzero
vector x ∈ Rm, there exists an index i such that xi(B̄x)i > 0.

Proposition 4 [7]: Suppose that

max1≤i≤m

n∑
k=1

m∑
j=1

αij
k p

i
kp

j
k > 0,∀p = (pi)m

i=1 6= 0 (89)
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There exists a unique NE. In particular, this holds if either one of the following two conditions is satisfied:
(a) for every k = 1, ..., n, the tone matrix Mk is positive definite, where (Mk)ij = αij

k ,∀i, j = 1, ...,m;
(b) ρ(Υ) < 1.

Proof :
From Proposition 2, AV I(X , σ,M) has a unique solution if M has the uniform P property, thus for

any nonzero tuple p = (pi)m
i=q, max1≤i≤m(pi)T

∑m
j=1M

ijpj > 0, which is precisely (89).
For condition (a), M is positive definite because it is a principal rearrangement of diag(Mk)n

k=1. So
pTMp =

∑m
i=1

∑n
k=1

∑m
j=1 α

ij
k p

i
kp

j
k > 0.

For condition (b),

m∑
j=1

n∑
k=1

αij
k p

i
kp

j
k =

n∑
k=1

(pi
k)2 +

∑
j 6=i

n∑
k=1

αij
k p

i
kp

j
k

≥
n∑

k=1

(pi
k)2 −

∑
j 6=i

n∑
k=1

αij
k |p

i
k||p

j
k|

≥
n∑

k=1

(pi
k)2 −

∑
j 6=i

(
n∑

k=1

(pi
k)2)1/2(

n∑
k=1

(αij
k p

j
k)2)1/2 (Cauchy-Schwarz inequality)

≥
n∑

k=1

(pi
k)2 −

∑
j 6=i

max1≤k≤nα
ij
k (

n∑
k=1

(pi
k)2)1/2(

n∑
k=1

(pj
k)2)1/2

= (
n∑

k=1

(pi
k)2)1/2

m∑
j=1

b̄ij(
n∑

k=1

(pj
k)2)1/2(from (88)) (90)

Defining qi = (
∑n

k=1(pi
k)2)1/2, we have

∑m
j=1

∑n
k=1 α

ij
k p

i
kp

j
k ≥ qi

∑m
j=1 b̄ijqj = qi(B̄q)i,∀i = 1, ...,m.

Since condition (b) ρ(Υ) < 1 implies that max1≤i≤mqi(B̄q)i > 0, thus (89) holds. This completes the
proof.

V Comparison of the Results

The noncooperative game always admits a NE and the result is based on the game theory [11], so no
comparison on this is needed.

The sufficient conditions for the uniqueness of the NE derived from [7] and [8] are based on two
different methods. The proof in [8] is long and I find that it is easy to make mistakes when I read the
proof. The result, however, is very good, and gives additional insight into the physical interpretation
of the conditions for the uniqueness of the NE, i.e. the uniqueness of NE is ensured if the links are
sufficiently far apart from each other. [8] actually give two detailed physical interpretation of NE on
low-interference and high interference case, respectively. It also makes some investigation on the efficiency
of the NE. The proof in [7] is short and neat, as it takes the advantages of reformulating the game by
LCP and AVI, thus many results for LCP and AVI can be applied. However, the result does not give a
clear insight into the physical interpretation. Furthermore, LCP and AVI are real-valued, as mentioned
in Definition 4 & 5. The noise covariance (σ) and the channel model (M) may be complex-valued, thus
the result may not be applicable.

Both [7] and [8] generalize and extend the results in other papers [1, 2, 3, 4, 5, 6], which have fewer
constraints, such as spectral mask constraint, and more restrictive conditions. [8] even give specific
corresponding conditions using the new result for previous works. [1, 2, 3] actually talk about the same
thing, just on different channels, i.e. Gaussian interference channel, VDSL and DSL, respectively. They
consider the two-user system, which is generalized to the system with arbitrary number of users by other
papers. [4, 5, 6] consider the system having arbitrary number of users. But they do not include spectral
mask constraint, which is practical.

[8] discusses two optimization problems and proves their equivalence, which is unique among those
papers. It proves that diagonal transmission from each user through the channel eigenmodes is optimal,
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irrespective of the channel state, power budget, spectral mask constraints, and interference levels, which
yields a strong simplification of the original optimization.

VI Conclusion

This report considers the application of convex optimization on design of multiuser non-cooperative
communication systems via game theory and focuses on the problems on existence and uniqueness of
the NE solution. All the eight papers are based on single-input single-output systems. I do not have
enough time to investigate the result for multiple-input multiple-output systems, such as [14]. A further
question after the study on existence and uniqueness of the NE is that: how to find the NE point?
Iterative and distributed algorithms are applied. [7] and [8] have shown that the uniqueness condition is
actually also responsible for the convergence of the algorithms. As this project is part of my Final Year
Thesis project, uniqueness condition for MIMO system, detailed algorithms and their convergence will
be studied afterwards. Further extension lies in the dealing with imperfect channel state information or
other new algorithms. I will see whether I can propose a algorithm and prove its convergence.
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