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Abstract—The proliferation of accelerometers on con-
sumer electronics has brought an opportunity for inte-
raction based on gestures or physical manipulation of 
the devices. We present uWave, an efficient recognition 
algorithm for such interaction using a single three-axis 
accelerometer. Unlike statistical methods, uWave re-
quires a single training sample for each gesture pattern 
and allows users to employ personalized gestures and 
physical manipulations. We evaluate uWave using a 
large gesture library with over 4000 samples collected 
from eight users over an elongated period of time for a 
gesture vocabulary with eight gesture patterns identified 
by a Nokia research. It shows that uWave achieves 
98.6% accuracy, competitive with statistical methods 
that require significantly more training samples. Our 
evaluation data set is the largest and most extensive in 
published studies, to the best of our knowledge. We also 
present applications of uWave in gesture-based user 
authentication and interaction with three-dimensional 
mobile user interfaces using user created gestures.  

Keywords-gesture recognition, acceleration, dynamic time 
warping, personalized gesture 

I. INTRODUCTION 
Gestures1 have recently become attractive for spontaneous 
interaction with consumer electronics and mobile devices in 
the context of pervasive computing [1-3]. However, there 
are multiple technical challenges to gesture-based interac-
tion. Firstly, unlike many pattern recognition problems, e.g. 
speech recognition, gesture recognition lacks a standardized 
or widely accepted “vocabulary”. It is often desirable and 
necessary for users to create their own gestures, or persona-
lized gestures. With personalized gestures, it is difficult to 
collect a large set of training samples necessary for estab-
lished statistical methods, e.g., Hidden Markov Model 
(HMM) [4-6]. Secondly, spontaneous interaction requires 
immediate engagement, i.e., the overhead of setting up the 
recognition instrumentation should be minimal. More im-
portantly, the targeted platforms for personalized gesture 
recognition are usually highly constrained in cost and sys-
tem resources, including battery, computing power, and 

                                                           
1 We use “gestures” to refer to free-space hand movements that 

physically move or disturb the interaction device. Such move-
ments include not only gestures as we commonly know; but also 
physical manipulations like shaking and tapping of the device 

interface hardware, e.g. buttons. As a result, computer vi-
sion [1, 2] or “glove” [3] based solutions are unsuitable. 
In this work, we present uWave to address these challenges 
and focus on gestures without regard to finger movement, 
such as sign languages. Our goal is to support efficient per-
sonalized gesture recognition on a wide range of devices, in 
particular, on resource-constrained systems. Unlike statistic-
al methods [4], uWave only requires a single training sam-
ple to start; unlike computer vision-based methods [7], 
uWave only employs a three-axis accelerometer that has 
already appeared in numerous consumer electronics, e.g. 
Nintendo Wii remote, and mobile device, e.g. Apple iPhone. 
uWave matches the accelerometer readings for an unknown 
gesture with those for a vocabulary of known gestures, or 
templates, based on dynamic time warping (DTW) [8]. 
uWave is efficient and thus amenable to implementation on 
resource-constrained platforms. We have implemented mul-
tiple prototypes of uWave on various platforms, including 
Smartphones, microcontroller, and the Nintendo Wii remote 
hardware [9]. Our measurement shows that uWave recog-
nizes a gesture from an eight-gesture vocabulary in 2ms on 
a modern laptop, 4ms on a Pocket PC, and 300ms on a 16-
bit microcontroller, without any complicated optimization. 
We evaluate uWave with a gesture vocabulary identified by 
a Nokia research [4] for which we have collected a library 
of 4480 gestures from eight participants over multiple 
weeks. The evaluation shows that uWave achieves accuracy 
of 98.6% and 93.5% with and without template adaptation, 
respectively, for user-dependent gesture recognition. The 
accuracy is the best for accelerometer-based user-dependent 
gesture recognition. Moreover, our evaluation data set is 
also the largest and most extensive in published studies, to 
the best of our knowledge. 
In summary, we make the following contributions.  
• We present uWave, an efficient gesture recognition 

method based on a single accelerometer using dynamic 
time warping (DTW). uWave requires a single training 
sample per vocabulary gesture.  

• We show that there are considerable variations in ges-
tures collected over a long time and in gestures col-
lected from multiple users; we highlight the importance 
of adaptive and user-dependent recognition. 

• We report an extensive evaluation of uWave with over 
4000 gesture samples collected from eight users over 
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multiple weeks for a predefined vocabulary of eight 
gesture patterns. 

• We present two applications of uWave: gesture-based 
user authentication and gesture-based manipulation of 
three-dimensional user interfaces on mobile phones. 

The strength of uWave in user-dependent gesture recogni-
tion makes it ideal for personalized gesture-based interac-
tion. With uWave, users can create simple personal gestures 
for frequent interaction. Its simplicity, efficiency, and mi-
nimal hardware requirement (a single accelerometer) make 
uWave have the potential to enable personalized gesture-
based interaction with a broad range of devices.  
The rest of the paper is organized as follows. We discuss 
related work in Section II and then present the technical 
details of uWave in Section III. We next describe a proto-
type implementation of uWave using the Wii remote in Sec-
tion IV. We report an evaluation of uWave through a large 
database for a predefined gesture vocabulary of eight simple 
gestures in Section V. We present the application of uWave 
to gesture-based user authentication and interaction with 
mobile phones in Section VI. We discuss the limitations of 
uWave and acceleration-based gesture recognition in gener-
al in Section VII and conclude in Section VIII. Two proto-
types of uWave based on a Wii remote and a mobile phone, 
respectively, has been demonstrated at ACM UIST in Octo-
ber 2008 [10]. In this work, we present the technical details, 
system implementation, and applications of uWave. 

II. RELATED WORK 
Gesture recognition has been extensively investigated [1, 2]. 
The majority of the past work has focused on detecting the 
contour of hand movement. Computer vision techniques in 
different forms have been extensively explored in this direc-
tion [7]. As a recent example, the Wii remote has a “camera” 
(IR sensor) inside the remote and detects motion by tracking 
the relative movement of IR transmitters mounted on the 
display. It basically translates a “gesture” into “handwrit-
ing”, lending itself to a rich set of handwriting recognition 
techniques. Vision-based methods, however, are fundamen-
tally limited by their hardware requirements (i.e. cameras or 
transmitters) and high computation load. Similarly, “smart 
glove” based solutions [3, 11, 12] can recognize very fine 
gestures, e.g., the finger movement and conformation but 
require the user to wear a glove tagged with multiple sen-
sors to capture finger and hand motions in fine granularity. 
As a result, they are unfit for spontaneous interaction due to 
the high overhead of engagement.  
As ultra low-power low-cost accelerometers appear on con-
sumer electronics and mobile devices, many have recently 
investigated gesture recognition based on the time series of 
acceleration, often with additional information from a gy-
roscope or compass. Signal processing and ad hoc recogni-
tion methods were explored in [13, 14]. LiveMove Pro [15] 
from Ailive provides a gesture recognition library based on 
the accelerometer in the Wii remote. Unlike uWave, Live-
Move Pro targets user-independent gesture recognition with 
a predefined gesture vocabulary and requires 5 to 10 train-
ing samples for each gesture. No systematic evaluation of 

the accuracy of LiveMove Pro is publicly available. HMM, 
investigated in [4, 5, 16], is the mainstream method for 
speech recognition. However, HMM-based methods require 
extensive training data to be effective. The authors of [5] 
realized this and attempted to address it by converting two 
samples into a large set of training data by adding Gaussian 
noise. While the authors showed improved accuracy, the 
effectiveness of this method is likely to be highly limited 
because it essentially assumes that variations in human ges-
tures are Gaussian. In contrast, uWave requires as few as a 
single training sample for each gesture and delivers compet-
itive accuracy. Another limitation of HMM-based methods 
is that they often require knowledge of the vocabulary in 
order to configure the models properly, e.g. the number of 
states in the model. Therefore, HMM-based methods may 
suffer when users are allowed to choose gestures freely, or 
for personalized gesture recognition. Moreover, as we will 
see in the evaluation section, the evaluation dataset and the 
test procedure used in [4, 5, 16] did not consider gesture 
variations over the time. Thus their results are likely to be 
overly optimistic.  
Dynamic time warping (DTW) is the core of uWave. It was 
extensively investigated for speech recognition in the 1970s 
and early 1980s [8], in particular speaker-dependent speech 
recognition with a limited vocabulary. Later, HMM-based 
methods became the mainstream because they are more 
scalable toward a large vocabulary and can better benefit 
from a large set of training data. However, DTW is still very 
effective in coping with limited training data and a small 
vocabulary, which matches up well with personalized ges-
ture-based interaction with consumer electronics and mobile 
devices. Wilson and Wilson applied DTW and HMM with 
XWand [16] to user-independent gesture recognition. The 
low accuracies, 72% for DTW and 90% for HMM with sev-
en training samples, render them almost impractical. In con-
trast, uWave focuses on personalized and user-dependent 
gesture recognition, thus achieving much higher recognition 
accuracies. It is also important to note that the evaluation 
data set employed in this work is considerably more exten-
sive than previously reported work, including [4, 5, 16].  
It is important to note that some authors use “gesture” to 
refer to handwritings on touch screen, instead of three-
dimensional free-hand movement. Some of these works, e.g. 
“$1 recognizer” [17], were also based on template matching, 
similar to uWave. However, because they are based on 
matching the geometric specifications of two handwritings, 
it may not apply to matching time series of accelerometer 
readings, which are subject to temporal dynamics (how fast 
and forceful the hand moves), three-dimensional accelera-
tion data due to movement of six degrees of freedom, and 
the confusion introduced by gravity. 

III. UWAVE ALGORITHM DESIGN 
In this section, we present the key technical components of 
uWave: acceleration quantization, dynamic time warping 
(DTW), and template adaptation. The premise of uWave is 
that human gestures can be characterized by the time series 
of forces applied to the handheld device. Therefore, uWave 
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TABLE 1: UWAVE QUANTIZES ACCELERATION DATA IN A NON-LINEAR 
FASHION BEFORE TEMPLATE MATCHING 

Acceleration Data 
(a) Converted Value  

a > 2g 16  

g < a < 2g 11~15 (five levels linearly)  

0 < a < g  1~10 (ten levels linearly)  

a = 0  0  

-g < a < 0 -1~-10 (ten levels linearly)  

-2g < a < -g -11~-15 (five levels linearly)  

a < -2g -16  

bases the recognition on the matching of two time series of 
forces, measured by a single three-axis accelerometer.  
For recognition, uWave leverages a template library that 
stores one or more time series of known identities for every 
vocabulary gesture, often input by the user. Figure 1 illu-
strates the recognition process. The input to uWave is a time 
series of acceleration provided by a three-axis accelerometer. 
Each time sample is a vector of three elements, correspond-
ing to the acceleration along the three axes. uWave first 
quantizes acceleration data into a time series of discrete 
values. The same quantization applies to the templates too. 
It then employs DTW to match the input time series against 
the templates of the gesture vocabulary. It recognizes the 
gesture as the template that provides the best matching. The 
recognition results, confirmed by the user as correct or in-
correct, can be used to adapt the existing templates to ac-
commodate gesture variations over the time.  

A. Quantization of Acceleration Data 
uWave quantizes the acceleration data before template 
matching. Quantization reduces the length of input time 
series for DTW in order to improve computation efficiency. 
It also converts the accelerometer reading into a discrete 
value thus reduces floating point computation. Both are de-
sirable for implementation in resource-constrained embed-
ded systems. Quantization improves recognition accuracy 
by removing variations not intrinsic to the gesture, e.g. acce-
lerometer noise and minor hand tilt. 
uWave quantization consists of two steps. In the first step, 
the time series of acceleration is temporally compressed by 
an averaging window of 50ms that moves at a 30ms step. 
This significantly reduces the length of the time series for 
DTW. The rationale behind it is that intrinsic acceleration 
produced by hand movement does not change erratically; 
and rapid changes in acceleration are often caused by noise 
and minor hand shake/tilt. In the second step, the accelera-
tion data is converted into one of 33 levels, as summarized 
by Table 1. Non-linear quantization is employed because we 
find that most samples are between –g and +g and very few 
go beyond +2g or below –2g. 

B. Dynamic Time Warping 
Dynamic time warping (DTW) is a classical algorithm 
based on dynamic programming to match two time series 

with temporal dynamics [8], given the function for calculat-
ing the distance between two time samples. uWave employs 
the Euclidean distance for matching quantized time series of 
acceleration. Let S[1…M] and T[1…N] denote the two time 
series. As shown in Figure 2(a), any matching between S 
and T with time warping can be represented as a monotonic 
path from the starting point (1, 1) to the end point (M, N) on 
the M by N grid. A point along the path, say (i, j), indicates 
that S[i] is matched with T[j]. The matching cost at this 
point is calculated as the distance between S[i] and T[j]. The 
path must be monotonic because the matching can only 
move forward. The similarity between S and T is evaluated 
by the minimum accumulative distance of all possible paths, 
or matching cost. 
DTW employs dynamic programming to calculate the 
matching cost and find the corresponding optimal path. As 
illustrated in Figure 2(a), the optimal path from (1, 1) to 
point (i, j) can be obtained from the optimal paths from (1, 1) 
to the three predecessor candidates, i.e. (i-1, j), (i, j-1), (i-1, 
j-1). The matching cost from (1, 1) to (i, j) is therefore the 
distance at (i, j) plus the smallest matching cost of the pre-
decessor candidates. The algorithm is illustrated in Figure 
2(b). The time complexity and space complexity of DTW 
are both O(M·N). 

 
Figure 1: uWave is based on acceleration quantization, template matching with DTW, and template adaptation 
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C. Template Adaptation 
As we will show in the evaluation section, there are consi-
derable variations between gesture samples by the same user 
collected from different days. Ideally, uWave should adapt 
its templates to accommodate such time variations. Tem-
plate adaption of DTW for speech recognition has been ex-
tensively studied, e.g. [18, 19], and proved to be effective. 
In this work, however, we only devise two simple schemes 
to adapt the templates. Our objective is not to explore the 
most effective adaptation methods but to demonstrate the 
template adaptation can be easily implemented and effective 
in improving recognition accuracy over multiple days. 
Our template adaptation works as follows. uWave keeps 
two templates generated in two different days for each vo-
cabulary gesture. It matches a gesture input with both tem-
plates of each vocabulary gesture and take the smaller 
matching cost of the two as the matching cost between the 
input and vocabulary gesture.  
Each template has a timestamp of when it is created. On the 
first day, there is only one training sample, or template, for 
each gesture. As the user input more gesture samples, 
uWave updates the templates based on how old the current 
templates are and how well they match with new inputs. We 
develop two simple updating schemes. In the first scheme, if 
both templates for a vocabulary gesture in the library are at 
least one day old and the input gesture is correctly recog-
nized, the older one will be replaced by the newly correctly 
recognized input gesture. We refer to this scheme as Posi-
tive Update. The second scheme differs from the first one 
only in that we replace the older template with the input 
gesture when it is incorrectly recognized. We call this 
scheme Negative Update. Positive Update only requires the 
user to notify uWave when recognition result is incorrect. 
Negative Update requires the user to point out the correct 
gesture when a recognition error happens, e.g. by pressing a 
button corresponding to the identity of the input sample.  

IV. PROTOTYPE IMPLEMENTATION 
We have implemented multiple prototypes of uWave on 
various platforms, including the Wii remote, Windows Mo-
bile Smartphones, Apple iPhone, and the Rice Orbit sensor 
[20]. Our accuracy evaluation is based on the Wii remote 
prototype, due to its popularity and ease of use.  
The Wii remote has a built-in three-axis accelerometer from 
Analog Devices, ADXL330 [21]. The accelerometer has a 
range of -3g to 3g and noise below 3.5mg when operating at 
100Hz [22]. The Wii remote can send the acceleration data 
and button actions through Bluetooth to a PC in real time. 
We implement uWave and its variations on a Windows PC 
using Visual C#. The implementation is about 300 lines of 
code. The prototype detects the start of a gesture when the 
‘A’ button on the Wii remote is pressed; and detects the end 
when the button is released. While our prototype is based on 
the Wii remote hardware, uWave can be implemented with 
any device with a three-axis accelerometer of proper sensi-
tivity and range as are those found in most consumer elec-
tronics and mobile devices. 
uWave gives out recognition result without perceptible de-
lay in our experiments based on PCs. We measured the 
speed of uWave implemented in C on multiple platforms. 
On a Lenovo T60 with 1.6GHz Core 2 Duo, it takes less 
than 2ms for a template library of eight gestures. On a T-
Mobile MDA Pocket PC with Windows Mobile 5.0 and 
195MHz TI OMAP processor, it takes about 4ms for the 
same vocabulary. Such latencies are too short to be percept-
ible to human users. We also tested uWave on an extremely 
simple 16-bit microcontroller in the Rice Orbit sensor [20], 
TI MSP430LF1611. The delay is about 300ms. While this 
may be perceptible to the user, it is still much shorter than 
the time a gesture usually takes so that should not impair 
user experience.   

            (a) Graphic illustration of the recursive algorithm                                 (b) Algorithm for computing the DTW distance between S[1:i] and T[1:j] 

Figure 2: Dynamic Time Warping (DTW) algorithm 
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V. EVALUATION  
We next present our evaluation of uWave for a vocabulary 
of predefined gestures based on the Wii remote prototype.  

A. Gesture Vocabulary from Nokia 
We employ a set of eight simple gestures identified by a 
Nokia research study [4] as preferred by users for interac-
tion with home appliances. The work also provided com-
prehensive evaluation of HMM-based methods so that a 
comparison with uWave is possible. Figure 3 shows these 
gestures as the paths of hand movement.  

B. Gesture Database Collection 
We collect gestures corresponding to the Nokia vocabulary 
from eight participants with the Wii remote-based prototype. 
Two of them are undergraduates and others are graduate 
students; all but one is male. They are in 20s or early 30s, 
right handed.  
The gesture database is collected via the following proce-
dure. For a participant, gestures are collected from seven 
days within a period of about three weeks. On each day, the 
participant holds the Wii remote in hand and repeats each of 
the eight gestures in the Nokia vocabulary ten times. The 
database consists of 4480 gestures in total and 560 for each 
participant. This database provides us a statistically signifi-
cant benchmark for evaluating the recognition accuracy.  
It is important to note that the dataset used in [4] consists of 
30 samples for each gesture collected from a single user. All 
of the 30 samples for the same gesture were collected on the 
same day (the entire dataset of eight gestures were collected 
over two days). As we will highlight in this work, users ex-
hibit high variations in the same gesture over the time. Sam-
ples for the same gesture from the same day cannot capture 
this and may lead to overly optimistic recognition results. 

C. Recognition without Adaptation 
We first report recognition results for uWave without tem-
plate adaptation. 

1) Test Procedure 
Because our focus is personalized gesture recognition, we 
evaluate uWave using the gestures from each subject sepa-
rately. That is, the samples from a participant are used to 
provide templates and test samples for the same subject.  

We employ Bootstrapping [23] to further improve the statis-
tical significance of our evaluation. The following proce-
dure applies to each participant separately. For clarity, let us 
label the samples for each gesture by the order they were 
collected. For the ith test, we use the ith sample for each ges-
ture from the participant to build eight templates and use the 
rest samples from the same participant to test uWave. As i is 
from 1 to 70 (10 times by 7 days), we have 70 tests for each 
participant. Each test produces a confusion matrix that 
shows the percentage of times how a sample is recognized. 
We average the confusion matrixes for the 70 tests to pro-
duce the confusion matrix for each participant. 
We average confusion matrixes of all eight participants to 
produce the final confusion matrixes. Figure 4 (Left) sum-
marizes the recognition results of uWave over the database 
for the Nokia gesture vocabulary. In the matrixes, columns 
are recognized gestures and rows are the actual identities of 
input gestures.  
uWave achieves an average accuracy of 93.5%. Figure 4 
(Left) also shows that gesture 1, 2, 6 and 7 have lower rec-
ognition accuracy in that they involve similar hand move-
ment as each other, e.g. both gesture 1 and gesture 6 are 
featured by waving down movement. A closer look into the 
confusion matrixes for each participant reveals large varia-
tion (9%) in recognition accuracy among different partici-
pants. We observed that the participant with the highest 
accuracy performed the gestures in larger amplitude and 
slower speed compared to other participants.  
Our evaluation also shows the effectiveness of quantization, 
i.e., temporal compression and non-linear conversion, of the 
raw acceleration data. Temporal compression speeds up the 
recognition by more than nine times without a negative im-
pact on accuracy; and non-linear conversion improves the 
average accuracy by 1% and further speeds up the recogni-
tion.  

2) Evaluation using Samples from the Same Day 
To highlight how gesture variations from the same user over 
multiple days impact the gesture recognition, we modify the 
test procedure above so that when a sample is chosen as the 
template, uWave is tested only with other samples collected 
in the same day.  
Figure 4 (Right) summarizes the recognition results aver-
aged cross all eight participants. It shows a significantly 
higher accuracy (98.4%) than that of using samples from all 
different days. The difference between Figure 4 (Left) and 
Figure 4 (Right) highlights the possible variations for the 
same gesture from the same user over multiple days and the 
challenge it poses to recognition. This also indicates that the 
results reported by some previous work, e.g. [4, 5], were 
overly optimistic because the evaluation dataset was col-
lected over a very short time. 
The same-day accuracy of 98.4% by uWave with one train-
ing sample per gesture is comparable to HMM-based me-
thods with 12 training samples (98.6%) reported in [4]. It is 
worth noting that the accelerometer in Wii remote provides 
comparable accuracy but larger acceleration range (-3g to 
3g) than that used in [4] (-2g to 2g). In reality, however, the 

 
Figure 3: Gesture vocabulary adopted from [6]. The dot denotes the start
and the arrow the end 
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acceleration produced by hand movement rarely exceeds the 
range from -2g to 2g. Hence, the impact of difference in the 
accelerometers on the accuracy should be insignificant. 

D. Recognition with Adaptation 
The considerable difference between Figure 4 (Left) and 
Figure 4 (Right) motivates the use of template adaptation to 
accommodate variations over the time in order to achieve 
accuracy close to that in Figure 4 (Right). We report the 
results next. 
Again, we evaluate uWave with adaptation for each partici-
pant separately. Because the adaption is time-sensitive, we 
have to apply Bootstrapping in a more limited fashion. Let 
us label the days in which a participants’ gestures were col-
lected by the time order, from one to seven. For the ith test, 
we assume the evaluation starts on the ith day and applies the 
template adaptation in the following days, from (i+1)th to 7th 
and then from 1st to (i-1)th. We have seven tests for each 

participants and each produces a confusion matrix. We av-
erage them to produce the confusion matrix for each partici-
pant and average the confusion matrixes of all participants 
for the final one. 
Figure 5 summarizes the recognition results averaged across 
all participants. It shows an accuracy of 97.4% for Positive 
Update and 98.6% for Negative Update, significantly higher 
than that without adaptation (Figure 4 Left) and close to that 
tested with samples from the same day (Figure 4 Right). 
While template adaptation requires user feedback when a 
recognition error happens, the high accuracy indicates that it 
is needed only for 2-3% of all the test samples.  

VI. UWAVE-ENHANCED APPLICATIONS 
In this section, we present two applications that have been 
enhanced with the uWave technology, one for gesture-based 

           
Figure 4: Confusion matrixes for the Nokia vocabulary without adaptation. Columns are recognized gestures and rows are the actual identities of input 
gestures. (Left) Tested with samples from all days (average accuracy is 93.5%); (Right) Tested with samples from the same day as the template (average 
accuracy is 98.4%) 

92.1 0.1 2.4 1.9 0.1 2.9 0.6 0.1

1.6 91.6 1.3 1.1 0.7 0.4 2.7 0.6

0.5 0 95.9 1.2 0.7 1.7 0 0

0.3 0 1.6 96.2 0.7 1.1 0 0.1

0.3 0 1.5 0.6 97.0 0.5 0 0.1

2.4 0 2.4 2.3 1.0 91.7 0.1 0

3.4 1.9 2.6 1.7 0.4 0.7 89.2 0

1.1 0.6 1.7 0.9 0.8 0.7 0 94.2

98.4 0 0.3 0.4 0 0.4 0.3 0.2

0.5 98.3 0.2 0 0.3 0.1 0.4 0.1

0.2 0 98.3 0.6 0.1 0.6 0.2 0

0.2 0 0.3 98.8 0.3 0.2 0.2 0

0.4 0 0.2 0.4 98.7 0.1 0.2 0

0.7 0 0.6 0.5 0.3 97.7 0.2 0

0.5 0.4 0.4 0.1 0.1 0.3 98.1 0.2

0.2 0.1 0.1 0.2 0 0 0.2 99.2

           
Figure 5: Confusion matrixes for the Nokia vocabulary with adaptation, tested with samples from all days. Columns are recognized gestures and rows are
the actual identities of input gestures. (Left) Positive Update (average accuracy is 97.4%); (Right) Negative Update (average accuracy is 98.6%) 

96.8 0 1.5 0.3 0 1.1 0 0.2

0.7 96.4 0.5 0.2 0.2 0.4 1.2 0.5

0 0 98.9 0.6 0 0.5 0 0

0.2 0 0.3 98.9 0.2 0.5 0 0

0.2 0 0.2 0.1 99.3 0.2 0 0

0.6 0 0.6 0.3 1.7 96.8 0 0

0.8 2.0 2.0 0.4 0 0.2 94.6 0

1.0 0.4 1.1 0.4 0 0 0 97.1

97.7 0 1.2 0.6 0 0.6 0 0

0.6 98.6 0.2 0.1 0 0.1 0.3 0.1

0.1 0 99.1 0.4 0.1 0.4 0 0

0.1 0 0.4 99.0 0.1 0.4 0 0

0.2 0 0.3 0.1 99.2 0.2 0 0

0.5 0 0.4 0.2 0.5 98.3 0 0.1

0.4 0.5 07 0.2 0.1 0.2 98.0 0

0.2 0 0.3 0.4 0.1 0.1 0 98.9
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user authentication and the other for gesture-based interac-
tion with mobile phones. 

A. Gesture-based Light-Weight User Authentication 
Personalization is a growing component of many multi-user 
systems these days. However, outside the traditional realm 
of password-based strong authentication, there is a need for 
light-weight authentication techniques that prioritize ease-
of-use over hard security. Under many scenarios, user-
specific data can be privacy insensitive. For example, per-
sonal profiles or personalized configurations on a TV re-
mote shared by family members are likely to be privacy-
insensitive. For privacy-insensitive user-specific data, this 
manner of light-weight, ‘soft’ user authentication provides a 
mechanism for a user to personalize the device. The objec-
tives are 1) accurate recognition of a user and 2) to be user-
friendly, easy to remember and easy to perform. While 
many paradigms exist for user authentication, including 
password-based and biometrics, uWave enables authentica-
tion based on physical manipulation of the device with low 
cost and high efficiency. It is particularly suitable for im-
plementation on resource-constrained devices, such as mo-
bile phones and TV remotes. 
We conducted two user studies with the Wii remote-based 
prototype described in Section 4. We assume a small num-
ber (<10) of users share a device that can be personalized by 
loading user-specific data. The target audience for these 
devices is primarily shared consumer electronics, as men-
tioned above. The participants chose their signature collec-
tively in the first user study and independently in the second. 
Each study involved five participants who are Rice under-
graduate and graduate students.  
These studies show that uWave can recognize user-defined 
gestures with higher than 99.5% accuracy in both selection 
procedures. In the follow-up survey, the participants rated 
the difficulty of memorizing the gestures as 1.4 on average 
(on a 1-5 scale where 1 is “easiest” and 5 is “most difficult”), 
compared to 2.2 for memorizing a user ID (smaller number 
means less difficult); they rated the difficulty of performing 
the gesture as 1.9 on average, about the same as that for 
typing in a user ID. These results show that the usability of 
gesture-based schemes is at least as good as traditional user 
ID/password-based ones for authentication in terms of their 
cognitive and kinetic load on the user.  

It is important to note that the authors of [24-26] investi-
gated gestures as a biometrics for ‘hard’ user authentication 
where security is important. They attempted to recognize 
the user based on how she performs a given gesture. In con-
trast, our application of uWave is targeted at ‘soft’ user au-
thentication with any user-defined gestures.  

B. Gesture-based 3D Mobile User Interface 
One of the strengths of uWave is that it can recognize three-
dimensional hand movement. It has been shown that it is 
intuitive and convenient to navigate a 3D user interface with 
3D hand gestures [27]. Qualitatively, being able to manipu-
late a 3D interface using a 3D gesture is much more com-
pelling than traditional button-based solutions. In order to 
explore this, we developed a 3D-mobile application and 
integrated uWave with it to enable gesture-based navigation. 
The 3D application was built around a social networking-
based video-sharing service under development within Mo-
torola. The interface shows a rotating ring that contains 
thumbnails of various users (a friends list) as in Figure 6. 
Additionally, upon selecting a particular user, one can scroll 
through different video clips that have been submitted by 
that user. We employed uWave to navigate this user inter-
face using a series of specific movements such as tilting and 
slight shaking, which are more appropriate for a mobile 
device when the user is focused on the screen. We also add-
ed the personalization features of uWave to allow users to 
re-map gestures to their liking, enabling custom navigation 
of the 3D interface. 
The application runs on an accelerometer-enhanced Smart-
phone, and is implemented in C++ for the Windows Mobile 
6 Platform. The 3D interface is built and rendered using the 
Mobile 3D Graphics (M3G) API. The acceleration data is 
read via Bluetooth Serial at 100Hz. Even when the 3D ren-
dering consumes a significant amount of memory, uWave 
works smoothly with it, without introducing any human 
perceptible performance degradation. 

VII. DISCUSSION 
We next address the limitations of uWave and gesture rec-
ognition based on accelerometers in general. 

         
Figure 6: Mobile 3D User Interface with uWave-based gesture interaction: (left) Illustration of the user interface and (right) prototype implementation 
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A. Gestures and Time Series of Forces 
Due to a lack of a standardized gesture vocabulary, human 
users may have diverse opinions on what constitutes a 
unique gesture. As noted early, the premise of uWave is that 
human gestures can be characterized as time series of forces 
applied to a handheld device. Therefore, the temporal dy-
namic of gestures is closer to speech than to handwriting, 
which is usually recognized as the final contours without 
regard to the time sequence of the contours. However, it is 
important to note that while one may produce the three-
dimensional contour of the hand movement given a time 
series of forces, the same contour may be produced by very 
different time series of forces. Nevertheless, our evaluation 
gesture samples were collected without enforcing any defi-
nition of gestures to our participants. The high accuracy of 
uWave indicates that its premise is close to how users perce-
ive gestures and how users perform gestures.  

B. Challenge of Tilt 
On the other hand, uWave relies on a single three-axis acce-
lerometer to infer the force applied. However, the reading of 
the accelerometer does not directly reflect the external 
force, because the accelerometer can be tilted around three 
axes. The same external force may produce different accele-
rations along the three axes of the accelerometer if it is tilted 
differently; likewise, the different forces may also produce 
the same accelerometer readings. Only if the tilt is known, 
the force can be inferred from the accelerometer readings. 
The opportunity for detecting the tilt during hand movement 
is very limited with a single accelerometer. We attempted to 
address it by allowing each pair of matching points on the 
DTW grid (See Figure 2) to calculate the distance based on 
tilts of small angles. While it helped with matching samples 
of the same gesture collected with different tilts, it also in-
creased the confusion between certain gestures, largely due 
to the confusion between gravity and the external force. To 
fully address tilt variation, extra sensors, e.g. compass and 
gyroscope, will be necessary for additional information.  

C. User-Dependent vs. User Independent Recognition 
This work and numerous others are targeted at user-
dependent gesture recognition only. The reasons are mul-
tiple. First, user-independent gesture recognition is difficult. 
Our database shows great variations among participants 
even for the same predefined gesture. For example, if we 
treat all the samples in the database as from the same partic-
ipant and repeat our bootstrapping test procedure, the accu-
racy will decrease to 75.4% from 98.4% for user-dependent 
recognition. To improve the accuracy of user-independent 
recognition, a large set of training samples and a statistical 
method are necessary. More importantly, research is re-
quired to identify the common “features” from the accelera-
tion data for the same gesture. In speech recognition, MFCC 
and LPCC have been found to capture the identity of speech 
very effectively. Unfortunately, we do not know their coun-
terparts for acceleration-based gesture recognition. Second, 
user-independent gesture recognition may not be as attrac-
tive as speaker-independent speech recognition because 
there is no standard or commonly accepted gestures for inte-

raction. Commonly recognized gestures by humans are of-
ten simple, such as those in the Nokia vocabulary. As they 
are short and simple, however, they can be easily confused 
with each other, in particular with the presence of tilt and 
user variations. On the other hand, for personalized gestures 
composed by users, it is almost impossible to collect a large 
dataset for statistical methods to be effective. 

D. Gesture Vocabulary Selection 
The confusion matrixes presented in Figure 4 and Figure 5 
highlight the importance of selecting the right gesture voca-
bulary for higher accuracy. As from Figure 4, we can see 
that uWave often confuses Gesture 1 with Gesture 7. The 
reason is that tilt of the handheld device can transform dif-
ferent forces into similar accelerometer readings. Unlike 
speech recognition, gesture recognition has more flexible 
inputs, because the user can compose gestures without the 
constraint of a “language”. More complicated gestures may 
lead to higher accuracy because they are likely to have more 
features that distinguish them from each other, in particular, 
offsetting the effect of tilt and gravity. Nevertheless, com-
plicated gestures pose a burden to human users: the user has 
to remember how to perform complicated gestures in a con-
sistent manner and associate them with some unrelated 
functionality. Eventually, the number of complicated ges-
tures a user can comfortably command may be quite small. 
This may limit gesture-based interaction with a relatively 
small vocabulary for which uWave indeed excels. 

VIII. CONCLUSIONS 
We present uWave for interaction based on personalized 
gestures and physical manipulations of a consumer electron-
ic or mobile device. uWave employs a single accelerometer 
so it can be readily implemented on many commercially 
available consumer electronics and mobile devices. The 
core of uWave includes dynamic time warping (DTW) to 
measure similarities between two time series of accelerome-
ter readings; quantization for reducing computation load and 
suppressing noise and non-intrinsic variations in gesture 
performance; and template adaptation for coping with ges-
ture variation over the time. Its simplicity and efficiency 
allow implementation on a wide range of devices, including 
simple 16-bit microcontrollers. 
We evaluate the application of uWave to user-dependent 
recognition of predefined gestures with over 4000 samples 
collected from eight users over multiple weeks. Our expe-
riments demonstrate that uWave achieves 98.6% accuracy 
starting with only one training sample. This is comparable 
to the reported accuracy by HMM-based methods [4] with 
12 training samples (98.9%). We show that the quantization 
improves recognition accuracy and reduces the computation 
load. Our evaluation also highlights the challenge of varia-
tions over the time to user-dependent gesture recognition 
and the challenge of variations across users to user-
independent gesture recognition. We presented two applica-
tions of uWave:  gesture-based authentication and mobile 
3D interface with gesture-based navigation on an accelero-
meter-enhanced Smartphone. Both applications show high 



 

9 

recognition accuracy and recognition speed with different 
hardware features and system resources. 
We believe uWave is a major step toward building technol-
ogy that facilitates personalized gesture recognition. Its ac-
curate recognition with one training sample is critical to the 
adoption of personalized gesture recognition in a range of 
devices and platforms and to the realization of novel ges-
ture-based navigation of next generation user interfaces. 
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