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ABSTRACT  
We report a series of user studies that evaluate the feasibility and 
usability of light-weight user authentication with a single tri-axis 
accelerometer. We base our investigation on uWave, a state-of-
the-art recognition system for user-created free-space manipula-
tion, or gestures. Our user studies address two types of user au-
thentication: non-critical authentication (or identification) for a 
user to retrieve privacy-insensitive data; and critical authentica-
tion for protecting privacy-sensitive data. For non-critical authen-
tication, our evaluation shows that uWave achieves high recogni-
tion accuracy (98%) and its usability is comparable with text ID-
based authentication. Our results also highlight the importance of 
constraints for users to select their gestures. For critical authenti-
cation, the evaluation shows uWave achieves state-of-the-art resi-
lience to attacks with 3% false positives and 3% false negatives, 
or 3% equal error rate. We also show that the equal error rate 
increases to 10% if the attackers see the users performing their 
gestures. This shows the limitation of gesture-based authentication 
and highlights the need for visual concealment. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User Interfac-
es – Evaluation/methodology, Input devices and strategies, Inte-
raction styles.  

General Terms 
Performance, Design, Human Factors, Security 

Keywords 
User study, authentication, gesture, accelerometer 

1. INTRODUCTION 
An increasing number of consumer electronics and mobile phones 
are equipped with accelerometers, enabling a device to “sense” 
how it is physically manipulated by the user. In this work, we use 
“gesture” to refer to such physical manipulation, including not 
only hand gesture as we commonly know but also any physical 
manipulation of the device like shaking and tapping.  

Many have studied the use of accelerometers to recognize ges-
tures [1-4]. Some recognizers, in particular our prior work uWave 
[1], allow the user to train the recognizer with as few as one single 
sample. Such recognizers provide an interesting opportunity for 
gesture-based user authentication, which is light-weight in terms 
of computing, form factor, and user engagement. For example, a 

user can “shake” a phone in a special way to log in or a TV re-
mote to load personalized data. While many paradigms exist for 
user authentication, including password [5], biometrics [6-8], 
speech [9], and handwriting [10], accelerometer-based gesture 
recognition has its unique value for user authentication because of 
its low cost, high efficiency, and no form factor change. These 
properties make it highly suitable for implementation on resource-
constrained devices, e.g. mobile phones and TV remotes.  

The goal of this work is to investigate the feasibility and usability 
of such gesture-based authentication using uWave, a state-of-the-
art gesture recognition system based on a single tri-axis accelero-
meter [1]. We distinguish two different objectives of user authen-
tication. For privacy-insensitive data, the objective of user authen-
tication is to retrieve user-specific data instead of protecting them, 
e.g. personal profiles or personalized configurations on a TV re-
mote shared by family members. In this case, accuracy and usabil-
ity are dominating concerns. We call such user authentication 
non-critical and call the gestures ID gestures. On the other hand, 
there are also privacy-sensitive data, e.g. personal contacts stored 
in a mobile phone. In this case, the objective of user authentica-
tion is to protect the data against possible unauthorized access, or 
attacks. Therefore, resilience to attacks and usability are dominat-
ing concerns. In contrast to non-critical authentication, we call 
such authentication critical and the gestures password gestures.  

In particular, we seek answers for the following questions. 

• How accurate can non-critical authentication be?  
• How difficult do users perceive memorizing and performing 

gestures, particularly in comparison to widely used text-based 
authentication?  

• Because uWave allows users to create personalized gestures, 
how do users select their gestures for authentication? How can 
the authentication be improved with constraints in gesture se-
lection? 

• What tradeoffs between security and usability can accelerome-
ter-based gesture recognition make for critical authentication? 

• Since performing gestures is likely to be more visible than typ-
ing textual passwords, what is the impact of visual disclosure of 
password gestures? 

To answer these questions, we design and conduct a series of user 
studies with controlled variations to examine accuracy, usability, 
and resilience against attacks in a comprehensive manner. The 
user studies involve 25 participants over one month. 

For non-critical authentication, our user study demonstrates that 
uWave achieves average 98% accuracy with simple gesture selec-
tion constraints; a follow-up survey shows that the usability of 
uWave for non-critical authentication is comparable to the use of 
textual ID-based authentication. For critical authentication, we 
find 3% equal rate of false negatives (rejecting authentic users’ 
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gestures) and false positives (accepting attackers’ gestures), or 
equal error rate, can be achieved without visual disclosure, mean-
ing the attacker does not see the owner’s password gesture per-
formance. Note that equal error rate is a standard performance 
measure of a classifier. The lower equal error rate, the more accu-
rate is the classifier. We also find showing the owner’s perfor-
mance to the attacker, or visual disclosure, increases the equal 
error rate to 10%. Therefore gesture-based authentication can be 
used only when strict security is either unnecessary or can be 
achieved through combination of gesture-based authentication and 
traditional methods. Our evaluation highlights the need to conceal 
the gesture performance. Our analysis also shows the potential to 
achieve a lower equal error rate through adaptation to users. 

Our work is the first publicly reported study that extensively eva-
luates the usability and feasibility of accelerometer-based authen-
tication with user-defined gestures. Recent work [11, 12]  has 
studied predefined gestures as behavioral biometrics , i.e. who the 
user is, however, our work studies user-created gestures as beha-
vioral secrets, i.e. what the user knows. Moreover, existing work 
requires a large number of training data and does not address usa-
bility.  

The rest of the paper is organized as follows. We discuss related 
work in Section 2 and then present an overview of uWave and its 
Wii remote-based prototype in Section 3. We present two series of 
extensive user studies for non-critical and critical authentications 
in Sections 4 and 5, respectively. We discuss how to improve 
critical authentication and present our observation on the choices 
of gestures in Section 6 and conclude in Section 7. 

2. RELATED WORK 
Most user authentication methods are based on either what prop-
erties the user has, e.g. fingerprint [6], face [7] and iris [8], or 
what the user knows, e.g. password [5], or both, e.g. speaker veri-
fication [9] and handwritten signature recognition [10]. All these 
methods, however, require form factor modification or considera-
ble computation and user engagement, unsuitable for operating 
small resource-constrained devices in a mobile manner. In con-
trast, accelerometer-based authentication allows free-space hand 
movement and does not require any form factor change to the 
device.  

The work in [11-13] considers gesture as a behavioral biometrics 
that the user has and attempts to verify or recognize the user iden-
tity based on a fixed gesture performed by all participants, e.g. a 
simple arm swing in [11]. In contrast, we allow the user to create 
any physical manipulation of the device as the authenticating 
gesture. In other words, our authentication approach is based on 
both what the user “knows” and what properties the user has. As a 
result, our work investigates the human factors in gesture selec-
tion and the usability of customized gestures. The goal of [11] is 
similar to that of our critical authentication: to verify a claimed 
user identity. The authors showed about 4% equal error rate over 
long time but through adaptation with a large number of training 
samples [13], compared to 3% in our solution of critical authenti-
cation with a single training sample. Notably, the basic method in 
[13] has over 14% equal error rate when not as many training 
samples are used. Moreover, the authors did not investigate how 
robust their methods are against attackers imitating the user, 
which is an important issue our work investigates. The goal of 
[12] is similar to that of our non-critical authentication: to recog-
nize a user out of a small number of users sharing a device. The 

work achieved an accuracy of about 95% with a large number of 
training samples, ten versus a single one with our method, and the 
user must perform a given gesture in a highly constrained manner, 
e.g. exact timing with real-time visual feedback. These are chal-
lenging requirements for implementation on resource-constrained 
smart objects in mobile computing. More importantly, the ges-
tures performed by a participant were collected from the same 
day, while both [13] and our prior work [1] showed there were 
significant variations in how a user performs the same gesture 
over time. As a result, the result reported in [12] is likely to be 
overly optimistic. In contrast, our solution achieves 98% over a 
period of four weeks. The fundamental reason is that our solution 
allows the users to create their personalized gestures and therefore 
allows more distinct features in their gestures.  

Related to our use of accelerometers, the work in [14] employed 
accelerometers to recognize the user with the gait pattern as a 
behavioral biometrics. Accelerometers have also been used to 
solve another security-related problem, pairing of two devices 
[15-19]. The approach is to produce a time series of acceleration 
as the shared secret between two devices. Such work, however, is 
very different from ours in their goal and scope. 

3. GESTURE RECOGNITION BASED ON 
ACCELEROMETER 
We next describe uWave, the gesture recognition system which 
our user studies are based on. 

3.1 UWave: Personalized Gesture Recognizer 
UWave bases the recognition on matching two time series of 
forces, measured by a single three-axis accelerometer. It employs 
a template library that stores one or more time series of known 
vocabulary gestures, often input by the user. The input to uWave 
is a time series of acceleration provided by a tri-axis accelerome-
ter. The tri-axis accelerometer measures the acceleration it expe-
riences on three orthogonal directions. Each time sample of the 
accelerometer reading is a trio of the acceleration along the three 
axes. uWave first quantizes acceleration data with multiple dis-
crete levels to compress the data and filter out small noises. The 
same quantization applies to the templates too. uWave then em-
ploys dynamic time warping (DTW) to match the input time series 
against the templates of the gesture vocabulary and calculate the 
different between the two as a matching distance. It recognizes the 
gesture as the template that provides the smallest matching dis-
tance. The recognition results, confirmed by the user as correct or 
incorrect, can be used to adapt the existing templates to accom-
modate gesture variations over time. More information regarding 
uWave can be found in [1]. 

UWave plays different roles in non critical authentication and 
critical authentication. In non critical authentication, uWave iden-
tifies the best matching template from multiple templates created 
by different users and recognize the user as the identity behind the 
best-matching template. In critical authentication, uWave func-
tions as a classic binary classifier. It calculates the matching dis-
tance between the input gesture and the template gesture 
representing the claimed user identity. If the matching distance is 
lower than a certain threshold, the input gesture is accepted as the 
claimed identity and otherwise rejected. For critical authentica-
tion, uWave may make two types of errors: false positive when it 
accepts an attacker’s input; and false negative when it rejects the 
owner’s input. A higher threshold leads to more false negatives 



 

(rejecting authentic user’s gestures) so that less usable but less 
false positives (accepting attackers’ gestures) so that more secure. 
By varying the threshold, one can obtain the receiver operating 
characteristic (ROC) curve, which quantitatively represents the 
classifier’s tradeoff between false positives and false negatives. 
An ideal classifier should be able to achieve both low false posi-
tive and low false positive rates.  

In our implementation, the threshold for critical authentication is a 
portion of the base distance, calculated as the matching distance 
between the pre-recorded password gesture template and a still 
state acceleration sequence. The still state acceleration sequence is 
the acceleration data generated by the accelerometer when it is at 
rest on the Earth’s surface for the same time duration as the ges-
ture template. 

3.2 Prototype for User Studies  
We implement a prototype of uWave using Wii remote, as illu-
strated in Figure 1. A Wii remote has a built-in three-axis accele-
rometer from Analog Devices. It can send the acceleration data 
and button actions through Bluetooth to a PC in real time. We 
implement uWave and its variations on a Windows PC using Vis-
ual C#. The implementation is about 300 lines of code. The proto-
type detects the start of a gesture when the ‘A’ button on the Wii 
remote is pressed; and detects the end when the button is released. 
While our prototype is based on the Wii remote hardware, uWave 
can be implemented with any device having a three-axis accele-
rometer of proper sensitivity and range as are those found in most 
consumer electronics and mobile devices.  

3.3 Complexity and Accuracy 
UWave gives out recognition result without perceptible delay in 
our experiments based on multiple platforms. We measured the 
speed of uWave implemented in C on multiple platforms. On a 
Lenovo T60 with 1.6GHz Core 2 Duo, it takes less than 2ms for a 
template library of eight gestures. On a T-Mobile MDA Pocket 
PC with Windows Mobile 5.0 and 195MHz TI OMAP processor, 
it takes about 4ms for the same vocabulary. Such latencies are too 
short to be perceptible to human users. We also test uWave on an 
in-house built sensor platform with an extremely simple 16-bit 
microcontroller, TI MSP430. The delay is about 300ms. While 
this may be perceptible to the user, it is still much shorter than the 
time a gesture usually takes so that should not impair user expe-
rience because the DTW matching can start as soon as the first 
reading of acceleration comes in.   

Using the Wii remote based prototype, we evaluate uWave with a 
set of eight simple gestures identified by a VTT study [4] and 

with a library of 4480 gestures collected from eight participants 
over multiple weeks. The study shows that uWave achieves accu-
racy of 98.6% with simple template adaptation for user-dependent 
gesture recognition, as reported in [1]. Such recognition accuracy 
is competitive with the results reported in [4] as 98.9% using 
HMM with 12 training samples. 

4. NON-CRITICAL AUTHENTICATION 
User identity can provide convenience to retrieve non-sensitive 
user-specific data. For example, many of the interfaces of ad-
vanced TV remotes can be personalized for users’ convenience. 
When a user takes control of the remote, he/she would like to 
retrieve his/her profile in a seamless manner. For such non-critical 
authentication, uWave identifies the best matching template from 
multiple templates created by different users and recognize the 
user as the identity behind the best-matching template.  

4.1 Objectives 
We aim to answer the following research questions for non-
critical authentication.  

• What accuracy can uWave system achieve in recognizing 
users based on user-created ID gestures? 

• How usable is it? In particular, how challenging is it to me-
morize and perform an ID gesture, in comparison to conven-
tional text ID-based authentication?  

• Since users are allowed to create their own gestures, what 
constraints in ID gesture selection can be employed to im-
prove the accuracy and usability? 

4.2 Procedure 
4.2.1 Participants and Training 
We recruit 25 participants. They are undergraduate and graduate 
students from multiple universities in the USA, aged 18 to 32, 18 
males and 7 females. They major in various disciplines, including 
Chemistry, History, Electrical Engineering, Computer Science, 
Mechanical Engineering, and MBA. Some have international 
background.  

We break the participants into five 5-person groups, called A to E 
in the follows. We conduct the user study for each group using a 
similar procedure with controlled variations. Table 1 summarizes 
procedural difference for all five groups. Before the user study, 
participants are given instructions on how to use the Wii remote-
based uWave prototype and are also provided with basic informa-
tion regarding its template-matching mechanism. They all play 
with the prototype to get acquainted. 

4.2.2 Selecting ID Gestures 
Table 1 summarizes the different procedures and constraints in ID 
gesture selection for each group.  

All participants in Group A attend the first session at the same 
time and are asked to agree on a set of gestures as their IDs for 
authentication. We suggest them not to choose simple gestures as 
identified by a VTT study for home appliance remote control [4] 
as shown in Figure 2, called VTT gestures in the rest of the paper; 
we further suggest the gestures to be shorter than five seconds. 
The participants are allowed to test the system to see whether it 
could recognize their selections or not: each of them input his/her 
gesture for a few times and the system gives them the recognition 
result immediately each time. This is designed to allow the partic-
ipants to evaluate their collective choice of gestures. In case two 

 
Figure 1: Wii remote based prototype of uWave: the Wii
remote sends the acceleration data through Bluetooth to the
laptop that runs the recognition algorithm 
 



 

gestures are highly confusing, they might have a chance to try 
new ones. Nevertheless, the first choices by all five participants 
are recognized with 100% accuracy in the session. As a result, 
they converge on the selection with only one attempt.  

Participants in Groups B to E select their gestures one after anoth-
er, without knowing the choices of others in the same group. Such 
a scenario is common for shared devices with gradual user adop-
tion and provides an important alternative to the collective selec-
tion in Group A. 

In order to compare the usability of ID gestures to that of com-
monly used textual IDs, we also ask participants in Groups B to D 
to choose a textual ID from a given list at the beginning of the 
study. Each textual ID on the list is comprised of a common used 
word of 3 to 8 letters and a randomly generated digit from 0 to 9. 
It is important to note that the purpose of these textual IDs is to 
provide a consistent base for usability comparison, instead of to 
emulate the textual IDs used in real life. 

For Groups B to E, we explore the impact of gesture selection 
constraints. The participants in Group B are free to choose any 
gesture as ID gesture. Four of them select very simple ones, simi-
lar to the VTT gestures. Those in Groups C to E are suggested to 
choose gestures more complex than the VTT gestures as shown in 
Figure 2. In addition, participants in Groups D and E have to 
compose gestures that can pass a rejection procedure: the first 
participant in a group is allowed to pick up any ID gesture; the 
rejection procedure will reject any subsequent ID gesture choices 
if the matching distance between them and existing ID gestures is 
below 50% of the average distance between each pair of the tem-
plate gestures from Group A.  

One input of the selected ID gesture by each participant is saved 
as his/her template. We ask the participants to note down their 
gestures on paper so that we can have the most accurate represen-
tation of the gestures. Although we may video tape the gesture 
performance, it is still difficult to accurately infer the path of the 
hand movement in free space. Noting down their gesture selec-
tions may help the participants remember the gestures. As ob-
served from their gesture selections, however, many of the se-
lected gestures are drawing of symbols or letters familiar to the 
participants and may have already been frequently used in their 
daily life. In this case, noting down the gesture should not signifi-
cantly impact the results of the user studies. Figure 3 shows their 

choices. It is important to note that the gestures are generated by 
six-degree free-space movement and Figure 3 only provides a 
planar representation. 

4.2.3 Collecting Gestures for Evaluation 
The gesture collection spans over one week for Group A and E. 
On each day, we invite the participants back to the lab to verify 
themselves with their ID gestures.  Each participant performs 
his/her ID gesture ten times and gets the recognition result imme-
diately after each input, similar to what would happen with user 
recognition in reality. With the immediate feedback, the partici-
pant can adjust the next input in case of a recognition error.  

The gesture collection for Groups B, C and D takes four weeks 
each. We invite participants back periodically with decreasing 
visit frequency to study the challenge of memorizing ID gestures. 
Participants visit us every day in the first week, every two days in 
the second week, and every three days in the last two weeks. In 
each visit, the participants perform their ID gesture 10 times and 
type in their textual IDs to login a laptop. They get the authentica-
tion result (success/fail) immediately after each input. If the aver-
age accuracy of a participant’s inputs drops below 50% in one 
session, we replace his/her template using the latest input. Such 
template replacement is motivated by findings from our early 
work [1] that it helps uWave cope with gesture variations over 
time. 

4.2.4 Surveys 
We conduct a structured survey with participants at the end of the 
study to evaluate their subjective opinions on the usability of ges-
ture-based authentication, which engenders two unique tasks: 1) 
memorizing the ID gesture and 2) performing it.  

Table 1: Procedure variations with Group A to E in the user study for non-critical authentication 

Group Gesture Selection Constraint Session Frequency Duration 
(week) Textual ID 

A Collectively Every day 1 No 

B Individually; No constraint; no 
rejection procedure 

Every day in the first week, Every two days in the 
second week; Every three days in the last two weeks 4 Yes 

C Individually; have constraint; 
no rejection procedure Same as Group B 4 Yes 

D Individually; have constraint 
and rejection procedure Same as Group B 4 Yes 

E Individually; have constraint 
and rejection procedure Every day 1 No 

 

 
Figure 2: VTT gestures 
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Our hypothesis to compare the difficulties of memorizing a ges-
ture and a textual ID is: 

H1: memorizing an ID gesture is as difficult as or more 
difficult than memorizing the pre-composed textual ID. 

Our hypothesis to compare the physical difficulty of performing a 
gesture and typing in a textual ID is: 

H2: performing an ID gesture is as difficult as or less 
difficult than typing in a pre-composed textual ID.   

In the survey, the participants are asked to rate 1) the difficulty of 
memorizing the gesture and the user ID in a 0 to 10 scale; 2) the 
difficulty of performing the gesture and typing in the textual ID in 
a 0 to 10 scale; 3) their agreement with two statements: “Memo-
rizing a gesture is no more challenging than memorizing a textual 
ID” and “Performing a gesture is no more physically challenging 
than typing in a textual ID”. There are also open-ended questions 
asking them to explain why. 

4.3 Authentication Results 
Figure 4 shows the average recognition accuracy in the first week 
for the five groups, since the data collection procedures in the first 
week are the same for all five groups. UWave achieves an average 
accuracy of 99.2% for Group A in which gesture complexity con-
straint is suggested and participants collectively select their ID 
gestures. Participants in Groups B to E select their ID gestures 
without knowing their peers’. The difference in the constraints of 
their gesture selection is detailed in Table 1. From Groups B to E, 
we observe the average accuracy increased from 88% to 99% due 
to gesture complexity constraints and the rejection procedure, 
which will be explained below. 

4.3.1 Selection Constraints Improve Accuracy 
The groups with complexity constraint and rejection procedure 
outperform the others: Group C has higher accuracy than Group B 
because of the complexity constraint; Groups D and E beat Group 
C because of the rejection procedure. The complexity constraint 

eliminates simple gestures which can be easily confused with each 
other; the rejection procedure guarantees enough difference be-
tween gesture templates. Both of these two conditions are impor-
tant to help participants create usable ID gestures. 

4.3.2 Template Replacement Improves Accuracy 
In our prior work [1], we found that the same gestures performed 
by the same participant had significant variations over time. Thus 
template replacement is important to adapt to such variations. 
From the non-critical authentication study, we also observe that 
template replacement when the accuracy drops below certain thre-
shold (50% in our study) can considerably improve accuracy. It 
enables users to overcome poorly inputted templates and adapt to 
performance variations over long time. In our study, B1 and B5 
have low accuracy at the first three to five sessions, get their tem-
plates replaced when the accuracy drop below 50%, and achieve 
92% and 98% accuracy respectively afterward. B3 has 50% accu-
racy at the very beginning but maintain 100% for the next a few 
sessions after template replacement. C2 and C5 have low accuracy 
(20~60%) in the first week, get templates replaced in the second 
week, and achieve 100% afterwards. 

4.4 Usability Evaluation 
We next evaluate the usability of gesture-based non-critical au-
thentication in terms of difficulties in memorizing and performing 
an ID gesture. Figure 5 shows the group-wise average difficulty 
ratings. We analyze the ratings through hypothesis testing. We are 
aware of the debate on whether data from Likert scales should be 
viewed as interval-level data or ordered-categorical data [20]. In 
our survey, however, a visual analog scale with equal spacing 
between responses is shown to the participants and more than five 
levels are provided. Therefore, we believe it is propitiate to use 
parametric statistical test for analysis.   

4.4.1 How difficult is memorizing gestures? 
We use independent two-sample t-test to analyze the survey re-
sults. With data from all 25 participants, there is significant differ-
ence in the means of the difficulty rating for memorizing gesture 
and textual ID (P = 0.04). Since the P-value is smaller than our 
significance level (5%), we reject H1 as stated in Section 4.2.4, 
accept its alternative hypothesis, and conclude that memorizing a 
gesture is less difficult than a pre-composed textual ID.  

4.4.2 How difficult is performing gestures? 
We analyze the difficulty of performing gestures in a similar way 
with independent two-sample t-test. The result (P = 0.24) shows 
there is not enough evidence to reject H2 as stated in Section 
4.2.4. In other words, our study does not find enough evidence to 
support that performing a gesture is more difficult that typing in a 
textual ID.   

We hypothesize that participants’ difficulty rating is negatively 
correlated to the recognition accuracy. For example, the partici-

 
Figure 4: Recognition accuracy for non-critical authenti-
cation: range and average for Groups A to E 
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Figure 3: ID gestures for non-critical authentication by all 25 participants 
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pants in Group C consider performing a gesture much more diffi-
cult than typing in a textual ID. At the same time, Group C exhi-
bits the largest variance in recognition accuracy as well as low 
average accuracy. To understand the correlation between accuracy 
and difficulty rating, we calculate the correlation coefficient be-
tween recognition accuracy and difficulty rating of performing a 
gesture for all five groups. The correlation coefficient of -0.45 
shows medium correlation [21] between accuracy and difficulty 
rating, meaning that the higher accuracy a user achieves, the lower 
difficulty he/she is likely to rate performing a gesture.  

For Group D and E who receive both complexity constraint and 
the rejection procedure for ID gesture selection, the difficulty of 
performing ID gestures are perceived as similar to that of typing 
in a pre-composed textual ID.  

5. CRITICAL AUTHENTICATION 
Critical authentication aims at guarding privacy-sensitive data 
from unauthorized access. It is important to note that we do not 
expect gesture-based authentication to provide strict security but 
consider it as a convenient light-weight authentication method that 
can be combined with traditional methods. For example, if the 
device receives several false gestures, it can activate conventional 
password protection. We next explore whether uWave can recog-
nize an owner-created gesture reliably while withstanding mali-
cious forging, or attack as we referred to in this paper. 

5.1 Objectives 
We seek to answer the following questions through user studies. 

• What tradeoffs between security and usability can the 
uWave-based solution achieve? 

• How security can be jeopardized if the attacker sees the 
owner’s gesture performance as gestures are much more 
visible than textual password entry?  

5.2 Procedure 
5.2.1 Participants 
We recruit ten participants, three females and seven males, aged 
from 20 to 32. Nine of them are graduate students and one is un-
dergraduate student. Their majors include Electrical Engineering, 
Computer Science, Psychology, Physics, Applied Mathematics, 
and Bio-engineering. We assign them to two five-person groups, 
F and G, in order to study the impact of visual disclosure. 

5.2.2 Tasks of the Participants 
In the study, the participants verify themselves with their pass-
word gestures and attempt to forge their group peers’ password 
gestures. A participant is called the owner of his/her own pass-
word gestures but called attacker when he/she tries to forge the 
password gestures from others. The only difference between 
Groups F and G is that attackers in Group F do not see the owner 
performing the password gestures; attackers in Group G do see it 
through a video recording, which we call visual disclosure. For 
visual disclosure, the recording camera faces the front of the per-
formers for all password gestures.  

The study takes five days. On the first day, each participant se-
lects two password gestures, each for one form of recognition 
feedback as explained later. In the following four days, the partic-
ipant comes back for two tasks: 1) to perform their own password 
gestures for five times to verify themselves; 2) to forge the pass-
word gestures of other participants in the same group for five 
trials; once the attacker has the first successful attack, he/she will 
have five extra trials after that. One participant attacks a different 
victim on each day. As a result, each password gesture is attacked 
for at least 20 times by four participants. Figure 6 shows the ges-
ture selections of Groups F and G. 

It is important to note that we choose to allow only five trials in 
forging a password gesture by an attacker because the system can 
resort to a more reliable authentication method, such as conven-
tional password, when several attempts have failed. Such a para-
digm has already been widely used in other forms of authentica-
tion. 

5.2.3 Two Forms of Authentication Feedback 
We also study the effect of different forms of recognition feed-
back by providing the authentication results in two forms: suc-
cess/fail and matching distance. Each participant has two pass-
word gestures. When the first password gesture is verified by the 
owner or attacked by an attacker, the authentication feedback is 
whether he/she succeeds or fails. The recognition result is based 
on a predetermined default threshold, calculated as a quarter of 
the base distance (defined in Section 3.1). The trials with suc-
cess/fail feedback are used to generate the baseline performance 
with the fixed threshold. For the second password gesture, the 
feedback is the matching distance between the input gesture and 
the gesture template of the owner recorded at the first day of the 
study. With the matching distance feedback, the participants know 
whether they are getting closer or not. The trials with matching 
distance feedback are used for ROC analysis with various thre-
sholds. 

                
Figure 5: Survey result for difficulty of memorizing (left) and performing a gesture (right) for Group A to E 
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5.3 Authentication Results  
Experiments with Group F demonstrate that uWave can achieve 
state-of-the-art false positive rate and false negative rate when the 
attacker does not see the target gesture. Not surprisingly, attackers 
in Group G encounters higher false positive rate due to visual 
disclosure. With a closer look into the results with matching dis-
tance feedback, however, it is possible to achieve both high usa-
bility and security for both Groups F and G if the rejection thre-
shold can be set individually for each owner.  

5.3.1 Baseline Performance with Default Threshold 
The default threshold in trials with success/fail feedback is set as a 
quarter of the base distance. Figure 7 presents the results from this 
default threshold, where the true positive rate equals one minus 
false negative rate and the true negative rate equals one minus 
false positive rate. As in Figure 7 (a), results for trials with suc-
cess/fail feedback show that uWave can correctly recognize the 
input gesture all the time for all participants except F5 and G1. F5 
and G1 each have two and one false negatives, respectively. 
Therefore, the rejection threshold based on a quarter of the base 
distance leads to 98% and 99% average true positive rates for 
Groups F and G, respectively. 

As to security as shown in Figure 7(b), all forged gestures are 
correctly rejected for all Group F participants except F2 and F5. 
uWave falsely accepts one to four of the faked gestures from other 
participants as they attack the password gestures of F2 and F5: F1 
has one successful attack on F2 but fails to repeat it in the follow-
ing five trials; F5 has the first success targeting F2 in the fourth 
trial and achieves four successful attacks among five additional 

trials. F1, F2, and F3 have two to four attack successes against F5. 
Overall, the same rejection threshold leads to 88% true negative 
rate.  

With the same threshold, true negative rates are significantly low-
er in Group G in which attackers were given visual disclosure. 
The average is 70% for Group G versus 88% for Group F. It is 
important to note that their true positive rates are different too. 
Therefore, the difference between their true negative rates should 
not be interpreted as 88-70=18%, as we will see later in ROC 
analysis. 

5.3.2 How close are the attackers? 
For trials with matching distance feedback, Figure 8 shows the 
statistics of matching distances per participant in the form of box 
plots. The distances are normalized by the base distances of each 
password gesture. For Group F, the matching distances by attack-
ers are always higher than those by the owner. It means if the 
threshold of rejection is carefully selected for each owner, it is 
possible to achieve 100% true positive rate and true negative rate 
for all owners except F4. If the proper threshold for an owner can 
be learned over time from multiple input samples, the perfor-
mance can be significantly better. 

For Group G in which visual disclosure is given to attackers, Fig-
ure 8(b) shows non-trivial difference between the matching dis-
tances by the owner and those by the attackers. Despite the low 
true negative rate with 0.25 as rejection threshold, matching dis-
tances by attackers are higher than those by the corresponding 
owner, similar to Group F. Hence it is still not trivial for attackers 
to forge a password gesture even with visual disclosure.  

 
Figure 6: Password gestures for critical authentication (two for each participant) 

F1                                       F2

F3                          F4                          F5

G1                                       G2

G3                            G4                        G5

 
(a) True positive rate 

 
(b)True negative rate 

Figure 7: Baseline performance for each owner of Group F and G with success/fail feedback 
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5.3.3 ROC Analysis 
Although it is possible to tune the rejection threshold for each user 
individually, an understanding of how uWave performs with a 
common threshold for all users is still important. To illustrate the 
tradeoffs between true positive and false positive in this case, 
Figure 9 presents the receiver operating characteristics (ROC) 
curves for Groups F and G. We calculate the average true positive 
rates and false positive rates on all participants in each group by 
varying the rejection threshold from 0 to 0.5.  

The ROC curve can help us decide a common threshold for all 
owners to achieve different tradeoff between false positive and 
true positive. A threshold between 0.15 and 0.2 will deliver nearly 
95% true positive rate and below 2% false positive rate for Group 
F and 90% true positive and 5% false positive rate for Group G. 
Using the ROC curve, we can also estimate the equal error rate 
(when false positive rate and false negative rate is the same) as 
3% for Group F and 10% for Group G.  

5.3.4 Impact of Visual Disclosure 
Not surprisingly, our study shows that visual disclosure increases 
false positives. As shown in Figure 9, under the same true positive 
rate, the false positive rate of Group G can be up to 10% higher 
than that of Group F. Such high false positive rate is likely to 
make the proposed authentication method useless, even for appli-
cations that do not require strict security.  

5.3.5 Impact of Feedback 
To explore the impact of different forms of feedback, we calculate 
the average matching distances of the attackers from the first trial 
through the fifth trial and present them in Figure 10. We make 
two observations. First, there is no clear trend in the attackers’ 
performance as the number of trials increases. Second, there is no 
significant difference between the matching distances of suc-
cess/fail feedback and those of matching distance feedback. We 
conjecture that the time series of acceleration is very complex and 
the space of exploration is simply too large to explore blindly, 
even with the feedbacks. As a result, even if the attackers know 
how close they are, it is still challenging for them to improve their 
attack. 

6. DISCUSSION 
We discuss some of our findings below in the context of future 
work. 

6.1 Improving Critical Authentication 
While our user evaluation shows that accelerometer-based authen-
tication works well for non-critical authentication in terms of both 
usability and accuracy, it apparently cannot provide the strict se-
curity required by critical authentication in many applications 
when visual disclosure is unavoidable. However, with an equal 
error rate of 3% in the case of no visual disclosure, it is still prom-
ising for applications in which strict security is not necessary or it 

        
(a) Group F                                                                                         (b) Group G 

Figure 9: Matching distance of the owners (boxes with solid outlines) and the attackers (boxes with dashed outlines) 
 

 
Figure 10: ROC curves of the uWave-based critical authenti-
cation 
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Figure 8: Normalized matching distances over multiple con-
secutive attack trials 
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can be combined with other methods to achieve an even lower 
rate. 

As we show in Section 5.3, visual disclosure can potentially rend-
er the authentication method useless even for applications that do 
not need strict security. Therefore, visual concealment is needed. 
While it is difficult to prevent others from seeing one perform the 
gesture, one may be able to hide the starting and end points of the 
password gesture. This can be easily implemented on many plat-
forms. For example, our Wii remote-based implementation re-
quires the user to hold a button on the remote while performing a 
gesture. Since it is difficult for the attackers to clearly see whether 
the user has pressed the button or not, the user can add spurious 
movement before pressing the button or after releasing the button 
to hide the real gesture. We also suggest employing 3D move-
ments in the password gesture in order to make it more challeng-
ing to forge.  

6.2 Choice of Gestures 
It is interesting to note how our participants compose their ID and 
password gestures. First, the selected gestures are very symbolic, 
such as regular shapes, letters, and characters in the native lan-
guages of the participants. Unlike speech or handwriting for 
which we are familiar with a well defined vocabulary, gestures are 
not employed in our everyday life for human to computer interac-
tion so that lack of a defined vocabulary commonly accepted by 
users. Therefore, gestures based on well-known concepts and 
symbols are easier to memorize as well as to perform consistently. 
Second, the selected gestures often carry personal meanings. For 
example, some of them are the name initials of the participants. 
Such choice provides an easy solution for the uniqueness of ges-
tures that can be easily memorized. Third, not surprisingly, pass-
word gestures for critical authentication from Groups F and G are 
significantly and consistently more complicated than ID gestures 
for non-critical authentication from Groups A to E. 

For non-critical authentication, we note that uWave works well 
for both collective and individual procedures of ID gesture selec-
tion. That it works well for collectively selected gestures impli-
cates that uWave distinguishes gestures in a similar way human 
users do; that it works well for gestures selected under uWave 
supervision implicates that uWave is effective in guiding users for 
rapidly selecting proper gestures without knowledge of others’ 
gestures.  

To further understand gesture selection, we ask the participants to 
rate the importance of several factors in their gesture selection in 
the survey. These factors include “easy to remember”, “having 
personal meaning”, “convenient for hand and arm movement”, 
“fast to perform”, “cool and fun to perform”, and “likely to be 
unique”. The average ratings are shown in Figure 11(a). Not sur-

prisingly, “easy to remember”, “convenient for movement” and 
“fast to perform” are the most important three factors for non-
critical authentications.  All three factors are concerned with usa-
bility, memorizing and performing the gesture. 

In contrast, the three most important factors for critical authentica-
tion are “unique”, “easy to remember”, and “personal meaning.” 
While participants still care about “easy to remember”, they con-
sider security as more important than difficulty of performing 
gestures. “Unique” is rated significantly higher than in non-
critical authentication, indicating that the participants consider 
uniqueness lead to better security. In addition, “personal meaning” 
also receives considerably higher rating than in non-critical au-
thentication. When answering the open ended questions about 
their gesture selection, the participants in critical authentication 
indicate personal meanings help them remember rather compli-
cated gestures. In contrast, participants in non-critical authentica-
tion select simpler gestures and do not need personal meanings to 
help them remember the gestures. 

As mentioned in Section 5.3, we also observe gesture selection 
can have a great impact on the tradeoff between security and usa-
bility for critical authentication. Our observations suggest that 
sharp movement changes in gestures create fine features in the 
time series of acceleration and therefore can make it more chal-
lenging to forge. 

7. CONCLUSIONS 
In this work, we investigate the feasibility and usability of ges-
ture-based user authentication using uWave, a gesture recognition 
system based on a tri-axis accelerometer. For non-critical authen-
tication, uWave recognizes the user from a small group of possi-
ble users; for critical authentication, uWave verifies the claimed 
user identity. We report an extensive evaluation of gesture-based 
user authentication with a comprehensive set of user studies. 

For non-critical authentication, we draw the following conclusions 
from our user studies.  

• UWave achieves an average accuracy of 98% in recognizing 
users based on user-created ID gestures even over multiple 
weeks. 

• Our participants rate the difficulty of memorizing and perform-
ing ID gestures as no more than that of our pre-composed sim-
ple textual IDs, given proper gesture selection constraints. 

• Gesture selection constraints have a significant impact on the 
accuracy of accelerometer-based authentication. Gesture com-
plexity constraints and the rejection procedure can improve ac-
curacy significantly. 

• Users’ evaluation of the difficulty of performing ID gestures is 
related to the accuracy they achieve. The higher accuracy the 

 
(a) Non-critical authentication                                                   (b) Critical authentication 

Figure 11: Importance ratings of factors in gesture selection 
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less difficult they tend to rate. Therefore, potential techniques 
intended for accuracy improvement are also likely to make us-
ers feel easier to use gestures for authentication. 

For critical authentication, we draw the following conclusions.  

• Without visual disclosure, an equal error rate 3% is achieved by 
uWave with a single training sample, compared to that reported 
in [13] (4%) with substantially more training data. 

• Visual disclosure increases the false positive rate by up to 10%, 
given the same true positive rate. It also increases the equal er-
ror rate to 10%.  

• Comparison between two forms of feedback shows that know-
ing the matching distance does not help the user achieve higher 
accuracy. 

In summary, our research has demonstrated that accelerometer-
based gesture recognition can provide feasible and usable solution 
for non-critical user authentication. For critical authentication, 
uWave achieves the state-of-the-art performance without visual 
disclosure. With 3% equal error rate, it can be useful when strict 
security is not expected. However, we show that visual disclosure 
can potentially increase the equal error rate to 10%, making the 
authentication method useless even for non-strict security. There 
is a need for future research to cope with visual disclosure. 

With the proliferation of low power, low cost accelerometers, we 
believe accelerometer and gesture-based user authentication has 
the potential to enable personalized services on resource-
constrained mobile devices. The work reported here, nevertheless, 
is the first step toward this goal. We believe further feature analy-
sis of acceleration from physical manipulation, inspiration from 
more sophisticated solutions in handwritten signature verification, 
and adaptive solutions to adjust the rejection threshold can help 
achieve more effective and usable gesture-based authentication. 
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