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Abstract   
The proliferation of low power, low cost accelerometers on 
consumer electronics has brought an opportunity to perso-
nalize gesture-based interaction. We present uWave, an 
efficient personalized gesture recognizer based on a 3-D 
accelerometer. The core technical components of uWave 
include quantization of accelerometer readings, dynamic 
time warping and template adaptation. Unlike statistical 
methods, uWave requires a single training sample and al-
lows users to employ personalized gestures. Our evaluation 
is based on a large gesture library with over 4000 samples 
collected from eight users. It shows that uWave achieves 
98.6% accuracy, competitive with statistical methods which 
require significantly more training samples.  
Keywords: gesture recognition, acceleration, dynamic time 
warping, personalized gesture 

1 Introduction 
Hand gesture is natural for human users to express them-
selves and interact with others. It has recently become at-
tractive for spontaneous interaction with consumer elec-
tronics and mobile devices. However, there are multiple 
technical challenges to gesture-based interaction. Firstly, 
unlike many pattern recognition problems, e.g. speech and 
handwriting recognition, gesture recognition does not enjoy 
a standardized or widely accepted “vocabulary”. Therefore, 
it is often desirable and necessary for users to create their 
own gestures, thus personalized gesture recognition. With 
personalized gestures, it is difficult to collect a large set of 
training samples which is necessary for established statis-
tical methods, e.g., Hidden Markov Model (HMM) [14, 7, 
6]. Moreover, spontaneous gesture-based interaction re-
quires immediate engagement, i.e., the overhead of setting 
up the recognition instrumentation should be minimal. 
More importantly, the targeted application platforms for 
personalized gesture recognition are usually highly con-
strained in cost and system resources, including battery, 
computing power, and alternative interfaces, e.g. buttons. 
As a result, computer vision or “glove” based solutions are 
usually unsuitable. 
In this work, we present uWave to address these challenges 
and focus on gestures without regard to finger movement, 
such as sign languages. Our goal is to support efficient per-
sonalized gesture recognition on a wide range of devices, in 
particular, on resource-constrained systems. Unlike statis-

tical methods [6], uWave only requires a single training 
sample to start; unlike computer vision-based methods 
[16], uWave only employs a three-axis accelerometer that 
has already appeared in numerous consumer electronics, 
e.g. Nintendo Wii remote, and mobile device, e.g. Apple 
iPhone. uWave matches the accelerometer readings for an 
unknown gesture with those for a vocabulary of known 
gestures, or templates, based on dynamic time warping 
(DTW) [10]. uWave is efficient and thus amenable to im-
plementation on resource-constrained platforms. We have 
implemented a prototype of uWave using the Nintendo Wii 
remote hardware [11]. Our measurement shows that uWave 
recognizes a gesture from an eight-gesture vocabulary in 
2ms on a modern laptop, 4ms on a Pocket PC, and 300ms 
on a 16-bit microcontroller, without any complicated opti-
mization. 
We evaluate uWave with a pre-defined vocabulary of sim-
ple gestures reported in [6] and with a library of 4480 ges-
tures collected from eight participants over multiple weeks. 
The study shows that uWave achieves accuracy of 98.6% 
with template adaptation and 93.5% without template adap-
tation for user-dependent gesture recognition. It also shows 
uWave is much less successful for user-independent recog-
nition (75% accuracy). 
In summary, we make the following original technical con-
tributions.  
• We present uWave, an efficient gesture recognition 

method based on a single accelerometer, quantization, 
and dynamic time warping (DTW). uWave requires a 
single training sample per vocabulary gesture. We also 
present two simple adaptation methods to accommo-
date gesture variations over the time.  

• We show that there are considerable variations in ges-
tures collected over long time and in gestures collected 
from multiple users; we highlight the importance of 
adaptive and user dependent recognition. 

• We report an extensive evaluation of uWave with over 
4000 gesture samples collected from eight users over 
multiple weeks for a predefined vocabulary of simple 
gestures. The evaluation shows that uWave is very ef-
fective and efficient for user-dependent recognition. 
 

The strength of uWave in user-dependent gesture recogni-
tion makes it ideal for personalized gesture-based interac-
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tion. With uWave, users can create simple personal ges-
tures for frequent interaction. Its simplicity, efficiency, and 
minimal hardware requirement (a single accelerometer) has 
the potential to enable personalized gesture-based interac-
tion with a broad range of devices. 
The rest of the paper is organized as follows. We discuss 
related work in Section 2 and then present the technical 
details of uWave in Section 3. We next describe a proto-
type implementation of uWave using the Wii remote in 
Section 4. We report an evaluation of uWave through a 
large database for a predefined gesture vocabulary of eight 
simple gestures in Section 5. We address the limitations of 
uWave and acceleration-based gesture recognition in gen-
eral in Section 6 and conclude in Section 7. 

2 Related Work 
Gesture recognition has been extensively investigated [2]. 
The majority of the past work has focused on detecting the 
contour of hand movement. Computer vision techniques in 
different forms have been extensively explored in this di-
rection [16]. For a recent example, VisionWand [3] em-
ploys computer vision to recognize the movement of a pas-
sive wand with a predefined color pattern. While the most 
common form requires one or more cameras to capture 
hand movement, the Wii remote has the “camera” (IR sen-
sor) inside the remote and detects motion by tracking the 
relative movement of IR transmitters mounted on the dis-
play. Therefore, it basically maps the three-dimensional 
remote movement onto a planar surface. This translates a 
“gesture” into “handwriting”, lending itself to a rich set of 
handwriting recognition techniques. Vision-based methods, 
however, are fundamentally limited by their hardware re-
quirements (i.e. cameras or transmitters) and relatively high 
computation load.  
“Smart glove” based solutions [13] have been investigated 
to recognize very fine gestures, for example the finger 
movement and conformation, instead of hand movement. 
These solutions require the user to wear a glove tagged 
with multiple sensors to capture the motion of fingers and 
hand in fine granularity. While they often yield impressive 
accuracy, these solutions are inadequate for spontaneous 
interaction with consumer electronics and mobile devices, 
because of the high cost of the glove and the high overhead 
of engagement.  
As ultra low power, low cost accelerometers, gyroscopes, 
and compasses start to appear on consumer electronics and 
mobile devices, many have recently investigated gesture 
recognition based on the time series of acceleration, often 
with additional information from a gyroscope or compass. 
Signal processing and ad hoc recognition methods were 
explored in [8]. LiveMove Pro [21] from Ailive provides a 
gesture recognition library based the accelerometer in the 
Wii remote. Unlike uWave, LiveMove Pro targets at user-
independent gesture recognition with predefined gesture 

classifiers and requires 5 to 10 training samples.  No sys-
tematic evaluation of the accuracy of LiveMove Pro exists. 
HMM, investigated in [5, 7, 6, 18], is the mainstream me-
thod for speech recognition. However, HMM-based me-
thods require extensive training data to be effective. The 
authors of [7] realized this and attempted to address it by 
converting two samples into a large set of training data by 
adding Gaussian noise. While the authors showed im-
proved accuracy, the effectiveness of this method is likely 
to be highly limited because it essentially assumes that var-
iations in human gestures are Gaussian. In contrast, uWave 
requires as few as a single training sample for each gesture 
and delivers competitive accuracy. Another limitation of 
HMM-based methods is that they often require knowledge 
of the vocabulary in order to configure the models properly, 
e.g. the number of states in the model. Therefore, HMM-
based methods may suffer when users are allowed to 
choose gestures freely. Moreover, as we will see in the 
evaluation section, the evaluation dataset and the test pro-
cedure used in [6, 7, 18] did not consider gesture variations 
over the time. Thus their results can be overly optimistic.  
Dynamic time warping (DTW) is the core of uWave. It was 
extensively investigated for speech recognition in the 1970s 
and early 1980s [10], in particular speaker-dependent 
speech recognition with a limited vocabulary. Later, HMM-
based methods became the mainstream because they are 
more scalable toward a large vocabulary and can better 
benefit from a large set of training data. However, DTW is 
still very effective in coping with limited training data and 
a small vocabulary, which matches up well with persona-
lized gesture-based interaction with consumer electronics 
and mobile devices.  
Wilson and Wilson applied DTW and HMM with XWand 
[18] to user-independent gesture recognition. The low accu-
racies, 72% for DTW and 90% for HMM with seven train-
ing samples, render them almost impractical. In contrast, 
uWave focuses on personalized and user-dependent gesture 
recognition, thus achieving much higher recognition accu-
racies. It is also important to note that the evaluation data 
set employed in this work is considerably more extensive 
than previously reported work, including [6, 7, 18]  
Similar to uWave, the “$1 recognizer” presented in [19] 
was also based on template matching. It is important to 
note that “gestures” in that work refer to handwritings on 
touch screen, instead of three-dimensional free-hand 
movement. The $1 recognizer is related to uWave in mul-
tiple aspects. First, although it is also based on template 
matching, the $1 recognizer may not apply to time series of 
accelerometer readings, which are subject to temporal dy-
namics (how fast and forceful the hand moves), three-
dimensional acceleration data due to movement of six de-
grees of freedom, and the confusion introduced by gravity. 
Second, the authors concluded that DTW is slower but 
achieves similar accuracy as the $1 recognizer. We show 
that with proper quantization, DTW-based uWave can be 
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extremely efficient. Moreover, uWave allows DTW to start 
as the very first point of the time series comes in and to 
proceed as more points are available. As a result, the delay 
can be masked by the much slower hand movement. Third, 
three-dimensional gestures may be projected onto a surface 
as handwritings. Therefore, the $1 recognizer can potential-
ly be applied to recognize certain gestures. However, this 
will suffer from the limitation of vision-based gesture rec-
ognition. In contrast, uWave is completely camera free and 
recognizes three-dimensional free hand movement. Fourth 
and most importantly, uWave and $1 recognizer are related 
in their focus on personalization. While [19] is mostly fo-
cused on recognition accuracy and speed, we are interested 
in the interaction between uWave and the personalizing 
process as our user studies are designed for. Moreover, we 
also investigate broader issues that concern accelerometer-
based gesture recognition, such as user dependence, tilt, 
and vocabulary selection. 

3 uWave Algorithm Design 
In this section, we present the key technical components of 
uWave: acceleration quantization, dynamic time warping 
(DTW), and template adaptation. The premise of uWave is 
that human gestures can be characterized by the time series 
of forces applied to the handheld device. Therefore, uWave 
bases the recognition on the matching of two time series of 
forces, measured by a single three-axis accelerometer.  
For recognition, uWave leverages a template library that 
stores one or more time series of known identities for every 
vocabulary gesture, often input by the user. Figure 1 illu-
strates the recognition process. The input to uWave is a 
time series of acceleration provided by a three-axis accele-
rometer. Each time sample is a vector of three elements, 
corresponding to the acceleration along the three axes. 
uWave first quantizes acceleration data into a time series of 
discrete values. The same quantization applies to the tem-
plates too. It then employs DTW to match the input time 
series against the templates of the gesture vocabulary. It 
recognizes the gesture as the template that provides the best 
matching. The recognition results, confirmed by the user as 

correct or incorrect, can be used to adapt the existing tem-
plates to accommodate gesture variations over the time.  

3.1. Quantization of Acceleration Data 
uWave quantizes the acceleration data before template 
matching. Quantization reduces the length of input time 
series for DTW in order to improve computation efficiency. 
It also converts the accelerometer reading into a discrete 
value thus reduces floating point computation. Both are 
desirable for implementation in resource-constrained em-
bedded systems. Quantization improves recognition accu-
racy by removing variations not intrinsic to the gesture, e.g. 
accelerometer noise and minor hand tilt. 
uWave quantization consists of two steps. In the first step, 
the time series of acceleration is temporally compressed by 
an averaging window of 50ms that moves at a 30ms step. 
This significantly reduces the length of the time series for 
DTW. The rationale behind it is that intrinsic acceleration 
produced by hand movement does not change erratically; 
and rapid changes in acceleration are often caused by noise 
and minor hand shake/tilt. In the second step, the accelera-
tion data is converted into one of 33 levels. Non-linear 

Quantization Match S with T1
using DTW

Select 
Minimum 
Distance

Continuous 
Acceleration

Discrete time series of 
discrete values (S)

Match S with TN
using DTW

D1

DN

Template 
Library

Template Adaption    
Figure 1: uWave is based on acceleration quantization, template matching with DTW, and template adaptation 

  Acceleration 
Data (a)  Converted Value  

a > 2g  16  

g < a < 2g  11~15 (five levels linearly)  

0 < a < g   1~10 (ten levels linearly)  

a = 0   0  

-g < a < 0  -1~-10 (ten levels linearly)  

-2g < a < -g  -11~-15 (five levels linearly)  

a < -2g  -16  

 
Table 1: uWave quantizes acceleration data in a non-
linear fashion before template matching 
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quantization is employed because we find that most sam-
ples are between –g and +g and very few go beyond +2g or 
below –2g. The non-linear conversion table is presented in 
Table 1. 

3.2. Dynamic Time Warping 
Dynamic time warping is a classical algorithm based on 
dynamic programming to match two time series with tem-
poral dynamics [10], given the function for calculating the 
distance between two time samples. uWave employs the 
Euclidean distance for matching quantized time series of 
acceleration. Let S[1…M] and T[1…N] denote the two 
time series. As shown in Figure 2, any matching between S 
and T with time warping can be represented as a monotonic 
path from the starting point (1, 1) to the end point (M, N) 
on the M by N grid. A point along the path, say (i, j), indi-
cates that S[i] is matched with T[j]. The matching cost at 
this point is calculated as the distance between S[i] and T[j]. 
The path must be monotonic because the matching can only 
move forward. The similarity between S and T is evaluated 
by the minimum accumulative distance of all possible paths, 
or matching cost.  
DTW employs dynamic programming to calculate the 
matching cost and find the corresponding optimal path. As 
illustrated in Figure 2, the optimal path from (1, 1) to point 
(i, j) can be obtained from the optimal paths from (1, 1) to 
the three predecessor candidates, i.e. (i-1, j), (i, j-1), (i-1, j-
1). The matching cost from (1, 1) to (i,j) is therefore the 
distance at (i, j) plus the smallest matching cost of the pre-
decessor candidates. The time complexity and space com-
plexity of DTW are both O(M·N). 

3.3. Template Adaptation 
As we will show in the evaluation section, there are consi-
derable variations between gesture samples by the same 
user collected from different days. Ideally, uWave should 
adapt its templates to accommodate such time variations. 

Template adaption of DTW for speech recognition has been 
extensively studied, e.g. [20,9], and proved to be effective. 
In this work, however, we only devise two simple schemes 
to adapt the templates. Our objective is not to explore the 
most effective adaptation methods but to demonstrate the 
template adaptation can be easily implemented and effec-
tive in improving recognition accuracy over multiple days. 
Our template adaptation works as follows. uWave keeps 
two templates generated in two different days for each vo-
cabulary gesture. It matches a gesture input with both tem-
plates of each vocabulary gesture and take the smaller 
matching cost of the two as the matching cost between the 
input and vocabulary gesture.  
Each template has a timestamp of when it is created. On the 
first day, there is only one training sample, or template, for 
each gesture. As the user input more gesture samples, 
uWave updates the templates based on how old the current 
templates are and how well they match with new inputs. 
We develop two simple updating schemes. In the first 
scheme, if both templates for a vocabulary gesture in the 
library are at least one day old and the input gesture is cor-
rectly recognized, the older one will be replaced by the 
newly correctly recognized input gesture. We refer to this 
scheme as Positive Update. The second scheme differs 
from the first one only in that we replace the older template 
with the input gesture when it is incorrectly recognized. We 
call this scheme Negative Update. Positive Update only 
requires the user to notify uWave when recognition result is 
incorrect. Negative Update requires the user to point out the 
correct gesture when a recognition error happens, e.g. by 
pressing a button corresponding to the identity of the input 
sample.  

4 Prototype Implementation 
We have implemented a prototype of uWave using the Wii 
remote as the interaction device. The Wii remote has a 
built-in three-axis accelerometer from Analog Devices, 
ADXL330 [17]. The accelerometer has a range of -3g to 3g 
and noise below 3.5mg when operating at 100Hz [1]. The 
Wii remote can send the acceleration data and button ac-
tions through Bluetooth to a PC in real time. We implement 
uWave and its variations on a Windows PC using Visual 
C#. The implementation is about 300 lines of code. The 
prototype detects the start of a gesture when the ‘A’ button 
on the Wii remote is pressed; and detects the end when the 
button is released. While our prototype is based on the Wii 
remote hardware, uWave can be implemented with any 
device with a three-axis accelerometer of proper sensitivity 
and range as are those found in most consumer electronics 
and mobile devices. 

4.1. Recognition Speed 
The structure of uWave allows the quantization and match-
ing to start with the very first sample in the unknown time 
series and proceed as more samples come in. Nevertheless, 

Sample1           ……                i ……               M 1 
   
   
   
  …
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 j 
   
   
  …
…
   
   
   
N
  Template

(i, j)

(i, j‐1)(i‐1, j‐1)

(i‐1, j)

Figure 2: Dynamic time warping of time series for best 
matching 
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our prototype does not leverage this: it starts after a com-
plete time series is collected. Even so, it gives out recogni-
tion result without perceptible delay in our experiments 
based on PCs. We measured the speed of uWave imple-
mented in C on multiple platforms. On a Lenovo T60 with 
1.6GHz Core 2 Duo, it takes less than 2ms for a template 
library of eight gestures on a T-Mobile MDA Pocket PC 
with Windows Mobile 5.0 and 195MHz TI OMAP proces-
sor, it takes about 4ms for the same vocabulary. Such laten-
cies are too short to be perceptible to human users. We also 
tested uWave on an extremely simple 16-bit microcontrol-
ler in the Rice Orbit sensor [12], TI MSP430LF1611. The 
delay is about 300ms. While this may be perceptible to the 
user, it can be easily masked if uWave is implemented to 
proceed at the same time as samples come in.  

5 Evaluation  
We next present our data evaluation of uWave for a voca-
bulary of predefined gestures based on the prototype de-
scribed above.  

5.1. Gesture Vocabulary from Nokia 
We employ a set of eight simple gestures identified by a 
Nokia research study [6] as preferred by users for interac-
tion with home appliances. The work also provided com-
prehensive evaluation of HMM-based methods so that a 
comparison with uWave is possible. Figure 3 shows these 
gestures as the paths of hand movement.  

5.2. Gesture Database Collection 
We collected gestures corresponding to the Nokia vocabu-
lary from eight participants with the Wii remote-based pro-
totype. Two of them are undergraduates and others are 
graduate students; all but one are males. They are in 20s or 
early 30s, right handed.  
The gesture database was collected via the following pro-
cedure. For a participant, gestures are collected from seven 
days within a period of about three weeks. On each day, the 
participant holds the Wii remote in hand and repeats each 
of the eight gestures in the Nokia vocabulary ten times. The 
database consists of 4480 gestures in total and 560 for each 

participant. This database provides us a statistically signifi-
cant benchmark for evaluating the recognition accuracy.  
It is important to note that the dataset used in [6] consists of 
30 samples for each gesture collected from a single user. 
All of the 30 samples for the same gesture were collected 
on the same day (the entire dataset of eight gestures were 
collected over two days). As we will highlight in this work, 
users exhibit high variations in the same gesture over the 
time. Samples for the same gesture from the same day can-
not capture this and may lead to overly optimistic recogni-
tion results. 

5.3. Recognition without Adaptation 
We first report recognition results for uWave without tem-
plate adaptation. 

5.3.1. Test Procedure 
Because our focus is personalized gesture recognition, we 
evaluate uWave using the gestures from each subject sepa-
rately. That is, the samples from a participant are used to 
provide templates and test samples for the same subject.  
We employ Bootstrapping [4] to further improve the statis-
tical significance of our evaluation. The following proce-
dure applies to each participant separately. For clarity, let 
us label the samples for each gesture by the order they were 
collected. For the ith test, we use the ith sample for each 
gesture from the participant to build eight templates and 
use the rest samples from the same participant to test 
uWave. As i is from 1 to 70 (10 times by 7 days), we have 
70 tests for each participant. Each test produces a confusion 
matrix that shows the percentage of times how a sample is 
recognized. We average the confusion matrixes for the 70 
tests to produce the confusion matrix for each participant. 
We average confusion matrixes of all eight participants to 
produce the final confusion matrixes. Figure 5 (Left) sum-
marizes the recognition results of uWave over the database 
for the Nokia gesture vocabulary. In the matrixes, columns 
are recognized gestures and rows are the actual identities of 
input gestures.  
uWave achieves an average accuracy of 93.5%. Figure 5 
(Left) also shows that gesture 1, 2, 6 and 7 have lower rec-
ognition accuracy in that they involve similar hand move-
ment as each other, e.g. both gesture 1 and gesture 6 are 
featured by waving down movement. A closer look into the 
confusion matrixes for each participant reveals large varia-
tion (9%) in recognition accuracy among different partici-
pants. We observed that the participant with the highest 
accuracy performed the gestures in larger amplitude and 
slower speed compared to other participants.  
Our evaluation also shows the effectiveness of quantiza-
tion, i.e., temporal compression and non-linear conversion, 
of the raw acceleration data. The former speeds up the rec-
ognition process by more than nine times without negative 
impact on accuracy, and the latter improves the average 

1 2 3 4

5 6 7 8

 

Figure 3: Gesture vocabulary adopted from [KKM+06]. The 
dot denotes the start and the arrow the end 
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accuracy for eight participants by 1% and further speed up 
the recognition.  

5.3.2. Evaluation using Samples from the Same Day 
To highlight how gesture variations from the same user 
over multiple days impact the gesture recognition, we mod-
ify the test procedure above so that when a sample is cho-
sen as the template, uWave is tested only with other sam-
ples collected in the same day.  
Figure 5 (Right) summarizes the recognition results aver-
aged cross all eight participants. It shows a significantly 
higher accuracy (98.4%) than that of using samples from all 

different days. The difference between Figure 5 (Left) and 
Figure 5 (Right) highlights the possible variations for the 
same gesture from the same user over multiple days and 
the challenge it poses to recognition. This also indicates 
that the results reported by some previous work, e.g. [7, 6], 
were overly optimistic because the evaluation dataset was 
collected over a very short time. 
The same-day accuracy of 98.4% by uWave with one train-
ing sample per gesture is comparable to HMM-based me-
thods with 12 training samples (98.6%) reported in [6]. It is 
worth noting that the accelerometer in Wii remote provides 
comparable accuracy but larger acceleration range (-3g to 

92.1 0.1 2.4 1.9 0.1 2.9 0.6 0.1

1.6 91.6 1.3 1.1 0.7 0.4 2.7 0.6

0.5 0 95.9 1.2 0.7 1.7 0 0

0.3 0 1.6 96.2 0.7 1.1 0 0.1

0.3 0 1.5 0.6 97.0 0.5 0 0.1

2.4 0 2.4 2.3 1.0 91.7 0.1 0

3.4 1.9 2.6 1.7 0.4 0.7 89.2 0

1.1 0.6 1.7 0.9 0.8 0.7 0 94.2
                           

98.4 0 0.3 0.4 0 0.4 0.3 0.2

0.5 98.3 0.2 0 0.3 0.1 0.4 0.1

0.2 0 98.3 0.6 0.1 0.6 0.2 0

0.2 0 0.3 98.8 0.3 0.2 0.2 0

0.4 0 0.2 0.4 98.7 0.1 0.2 0

0.7 0 0.6 0.5 0.3 97.7 0.2 0

0.5 0.4 0.4 0.1 0.1 0.3 98.1 0.2

0.2 0.1 0.1 0.2 0 0 0.2 99.2
 

Figure 5: Confusion matrixes for the Nokia vocabulary without adaptation. Columns are recognized gestures and rows are 
the actual identities of input gestures. (Left) Tested with samples from all days (average accuracy is 93.5%); (Right) Tested 
with samples from the same day as the template (average accuracy is 98.4%) 

96.8 0 1.5 0.3 0 1.1 0 0.2

0.7 96.4 0.5 0.2 0.2 0.4 1.2 0.5

0 0 98.9 0.6 0 0.5 0 0

0.2 0 0.3 98.9 0.2 0.5 0 0

0.2 0 0.2 0.1 99.3 0.2 0 0

0.6 0 0.6 0.3 1.7 96.8 0 0

0.8 2.0 2.0 0.4 0 0.2 94.6 0

1.0 0.4 1.1 0.4 0 0 0 97.1
                           

97.7 0 1.2 0.6 0 0.6 0 0

0.6 98.6 0.2 0.1 0 0.1 0.3 0.1

0.1 0 99.1 0.4 0.1 0.4 0 0

0.1 0 0.4 99.0 0.1 0.4 0 0

0.2 0 0.3 0.1 99.2 0.2 0 0

0.5 0 0.4 0.2 0.5 98.3 0 0.1

0.4 0.5 07 0.2 0.1 0.2 98.0 0

0.2 0 0.3 0.4 0.1 0.1 0 98.9
      

Figure 4: Confusion matrixes for the Nokia vocabulary with adaptation, tested with samples from all days. Columns are rec-
ognized gestures and rows are the actual identities of input gestures. (Left) Positive Update (average accuracy is 97.4%); 
(Right) Negative Update (average accuracy is 98.6%) 
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3g) than that used in [6] (-2g to 2g). In reality, however, the 
acceleration produced by hand movement rarely exceeds 
the range from -2g to 2g. Hence, the impact of difference in 
the accelerometers on the accuracy should be insignificant. 

5.4. Recognition with Adaptation 
The considerable difference between Figure 5 (Left) and 
Figure 5 (Right) motivates the use of template adaptation to 
accommodate variations over the time in order to achieve 
accuracy close to that in Figure 5 (Right). We report the 
results next. 
Again, we evaluate uWave with adaptation for each partic-
ipant separately. Because the adaption is time-sensitive, we 
have to apply Bootstrapping in a more limited fashion. Let 
us label the days in which a participants’ gestures were 
collected by the time order, from one to seven. For the ith 
test, we assume the evaluation starts on the ith day and ap-
plies the template adaptation in the following days, from 
(i+1)th to 7th and then from 1st to (i-1)th. We have seven 
tests for each participants and each produces a confusion 
matrix. We average them to produce the confusion matrix 
for each participant and average the confusion matrixes of 
all participants for the final one. 
Figure 4 summarizes the recognition results averaged 
across all eight participants. It shows an accuracy of 97.4% 
for Positive Update and 98.6% for Negative Update, signif-
icantly higher than that without adaptation (Figure 5 Left) 
and close to that tested with samples from the same day 
(Figure 5 Right). While template adaptation requires user 
feedback when a recognition error happens, the high accu-
racy indicates that it is needed only for 2-3% of all the test 
samples.  

6 Discussion 
We next address the limitation of uWave and gesture rec-
ognition based on accelerometers in general. 

6.1. Gestures and Time Series of Forces 
Resulted from lack of a standardized gesture vocabulary, 
human users may have diverse opinions on what constitute 
of a unique gesture. As noted early, the premise of uWave 
is that human gestures can be characterized as time series 
of forces applied to handheld device. With this view, the 
temporal dynamic of gestures is more similar to speech in 
nature than to handwritings, which are usually recognized 
by human users as the final contours without regard to the 
time sequence of the contours. However, it is important to 
note that while one may produce the three-dimensional 
contour of the hand movement given a time series of 
forces, the same contour may be produced by very different 
time series of forces. In particular, the contour can be pro-
duced with various velocities. Nevertheless, our evaluation 
gesture samples were collected without enforcing any defi-
nition of gestures to our participants. The high accuracy of 

uWave indicates that its premise is close to how users 
perceive gestures and how users perform gestures.  

6.2. Challenge of Tilt 
On the other hand, uWave relies on a single three-axis ac-
celerometer to infer the force applied. However, the read-
ing of the accelerometer does not directly reflect the exter-
nal force, because the accelerometer can be tilted around 
three axes. The same external force may produce different 
accelerations along the three axes of the accelerometer if it 
is tilted differently; likewise, the different forces may also 
produce the same accelerometer readings. Only if the tilt is 
known, the force can be inferred from the accelerometer 
readings. 
The opportunity for detecting the tilt during hand move-
ment is very limited with a single accelerometer. We at-
tempted to address it by allowing each pair of matching 
points on the DTW grid (See Figure 2) to calculate the dis-
tance based on tilts of small angles. While it helped with 
matching samples of the same gesture collected with differ-
ent tilts, it also increased the confusion between certain 
gestures, largely due to the confusion between gravity and 
the external force. To fully address tilt variation, it requires 
more sensors to provide more information, e.g. compass 
and gyroscope.  

6.3. User-Dependent vs. User Independent Recognition 
This work and numerous others are targeted at user-
dependent gesture recognition only. The reasons are mul-
tiple. First, user-independent gesture recognition is diffi-
cult. Our database shows great variations among partici-
pants even for the same predefined gesture. For example, if 
we treat all the samples in the database as from the same 
participant and repeat our bootstrapping test procedure, the 
accuracy will decrease to 75.4% compared with 98.4% for 
user-dependent recognition. To improve the accuracy of 
user-independent recognition, a large set of training sam-
ples and a statistical method are necessary. More impor-
tantly, research is required to identify the common “fea-
tures” from the acceleration data for the same gesture. In 
speech recognition, MFCC and LPCC have been found to 
capture the identity of speech very effectively. Unfortunate-
ly, we do not know their counterparts for acceleration-
based gesture recognition. Second, user-independent ges-
ture recognition may not be as attractive as speaker-
independent speech recognition because there is no stan-
dard or commonly accepted gestures for interaction. Com-
monly recognized gestures by humans are often simple, 
such as those in the Nokia vocabulary. As they are short 
and simple, however, they can be easily confused with each 
other, in particular with the presence of tilt and user varia-
tions. On the other hand, for personalized gestures com-
posed by users, it is almost impossible to collect a large 
dataset for statistical methods to be effective. 
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6.4. Gesture Vocabulary Selection 
The confusion matrixes presented in Figure 5 and Figure 4 
highlight the importance of selecting the right gesture vo-
cabulary for higher accuracy. As from Figure 5, we can see 
that uWave often confuses Gesture 1 with Gesture 7. The 
reason is that tilt of the handheld device can transform dif-
ferent forces into similar accelerometer readings. Unlike 
speech recognition where the selection of words is con-
strained by the language, gesture recognition has more flex-
ible inputs, because the user can compose gestures without 
the constraint of a “language”. More complicated gestures 
may lead to higher accuracy because they are likely to have 
more features that distinguish them from each other, in 
particular, offsetting the effect of tilt and gravity. Neverthe-
less, complicated gestures pose a burden to human users: 
the user has to remember how to perform complicated ges-
tures in a consistent manner and associate them with some 
unrelated functionality. Eventually, the number of compli-
cated gestures a user can comfortably command may be 
quite small. This may limit gesture-based interaction to a 
relatively small vocabulary, for which uWave indeed ex-
cels. 

6.5. Further Algorithmic Improvement 
It is important to note that the objective of this work is to 
demonstrate the effectiveness of uWave as a combination 
of quantization, DTW, and template adaptation in persona-
lized gesture recognition. While uWave achieves very 
competitive accuracy without user perceptible latency, we 
stop short of applying more advanced DTW and template 
adaptation algorithms to uWave. However, we are aware of 
numerous existing solutions that may be exploited. For 
recognition accuracy, extensive researches have explored 
more complicated template adaptation methods [20, 9]. For 
computation efficiency, advanced techniques have already 
been proposed to compute DTW in linear time and space 
[15].  

7 Conclusions 
We present uWave for personalized gesture-based interac-
tion. uWave employs a single accelerometer so that can be 
readily implemented on many commercially available con-
sumer electronics and mobile devices. The core of uWave 
includes 1) dynamic time warping (DTW) to measure simi-
larities between two time series of accelerometer readings; 
2) quantization for reducing computation load and sup-
pressing noise and non-intrinsic variations in gesture per-
formance; and 3) template adaptation for coping with ges-
ture variation over the time. Its simplicity and efficiency 
allow implementation on a wide range of devices, including 
simple 16-bit microcontrollers, as long as an accelerometer 
is available. 
We evaluate the application of uWave to user-dependent 
recognition of predefined gestures with over 4000 samples 
collected from eight users over multiple weeks. Our expe-

riments demonstrate that uWave achieves 98.6% accuracy 
starting with only one training sample. This is comparable 
to the reported accuracy by HMM-based methods [6] with 
12 training samples (98.9%). We show that the quantization 
improves recognition accuracy and reduces the computa-
tion load. Our evaluation also highlights the challenge of 
variations over the time to user-dependent gesture recogni-
tion and the challenge of variations across users to user-
independent gesture recognition. 
We believe uWave is a first major step toward building 
technology that facilitates personalized gesture recognition. 
Its accurate recognition with one training sample is critical 
to the adoption of personalized gesture recognition in a 
range of devices and platforms. It has the potential to ena-
ble novel gesture-based navigation and operation of next 
generation user interfaces. 
 
Acknowledgments The work is supported in part by NSF 
awards CNS/CSR-EHS 0720825 and IIS/HCC 0713249 
and by a gift from Motorola Labs. The authors would like 
to thank the partic ipants in our user studies who remain 
anonymous. 
 

References 
[1] Analog Device, Small, Low Power, 3-Axis ±3g i 
MEMS® Accelerometer, ADXL330 datasheet, 2006. 
[2] Baudel, T. and Beaudouin-Lafon, M. Charade: remote 
control of objects using free-hand gestures. ACM Commu-
nication, 36, 7, 28-35, Jul. 1993 
[3] Cao, X. and Balakrishnan, R. VisionWand: interaction 
techniques for large displays using a passive wand tracked 
in 3D. In Proc. 16th Annual ACM Symp. User Interface 
Software and Technology, November 2003. 
[4] Chernick, Michael R. Bootstrap Methods, A practition-
er's guide. Wiley Series in Probability and Statistics, 1999. 
[5] Hofmann, F. G., Heyer, P., and Hommel, G. Velocity 
Profile Based Recognition of Dynamic Gestures with Dis-
crete Hidden Marko[v Models. In Proc. Int. Gesture 
Wrkshp. Gesture and Sign Language in Human-Computer 
Interaction, September 1997. 
[6] Kela, J., Korpipää, P., Mäntyjärvi, J., Kallio, S., Savino, 
G., Jozzo, L., and Marca, D. Accelerometer-based gesture 
control for a design environment. Personal Ubiquitous 
Computing. 10, 5, 285-299, July 2006. 
[7] Mäntyjärvi, J., Kela, J., Korpipää, P., and Kallio, S. 
Enabling fast and effortless customisation in accelerometer 
based gesture interaction. In Proc. 3rd Int. Conf. Mobile 
and Ubiquitous Multimedia, October 2004. 
[8] Jang, I. J. and W. B. Park. Signal processing of the ac-
celerometer for gesture awareness on handheld devices. 



 

9 

Proc. 12th IEEE Int. Wrkshp Robot and Human Interactive 
Communication, 2003. 
[9] McInnes, F.R., Jack, M.A., and Laver, J. Template 
adaptation in an isolated word-recognition system. In IEE 
Proceedings, Vol. 136, Pt. I, No.2, April 1989. 
[10] Myers, C. S. and Rabiner, L. R.. A comparative study 
of several dynamic time-warping algorithms for connected 
word recognition. The Bell System Technical Journal, 
60(7):1389-1409, September 1981. 
[11] Nintendo Wii, http://www.nintendo.com/wii/. 
[12] Rice Orbit Sensor Platform,http://www.recg.org/orbit/ 
[13] Perng, J.K., Fisher, B., Hollar, S., and Pister, K.S.J. 
Acceleration sensing glove (ASG). In Proc. Int. Symp. 
Wearable Computers, 178 – 180, 18-19 October 1999. 
[14] Rabiner, L. R. and Juang, B. H., An Introduction to 
Hidden Markov Models. In IEEE ASSP Magazine, pp. 4-
15, January 1986. 
[15] Salvador, S. and Chan, P. FastDTW: Toward accurate 
dynamic time warping in linear time and space. In Proc. 
ACM Wkshp. Mining Temporal and Sequential Data, Au-
gust 2004. 

[16] Wu, Y. and Huang, T. S. Vision-Based Gesture Rec-
ognition: A Review. In Proc. Int. Gesture Workshop on 
Gesture-Based Communication in Human-Computer Inte-
raction, March 1999. 
[17] Wisniowski, H. Analog Devices and Nintendo colla-
boration drives video game innovation with iMEMS mo-
tion signal processing technology. Analog Devices, Inc. 
Retrieved on 2006-05-10. 
[18] Wilson, D. and Wilson, A. Gesture Recognition Using 
XWand, report CMU-RI-04-57, Robotics Institute, Carne-
gie Mellon University, 2004. 
[19] Wobbrock, J. O., Wilson, A. D., and Li, Y. Gestures 
without libraries, toolkits or training: a $1 recognizer for 
user interface prototypes. In Proc. 20th Annual ACM Symp. 
User Interface Software and Technology, October 2007.  
[20] Zelinski, R. and Class, F. A learning procedure for 
speaker-dependent word recognition systems based on se-
quential processing of input tokens. In Proc. IEEE ICASSP, 
1983. 
[21] AiLive LiveMove Pro: 
http://www.ailive.net/liveMovePro.html 

 


